
Mathematical Modelling and Analysis 2005. Pages 185–190

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

A PACKAGE FOR DEVELOPMENT OF

ALGORITHMS FOR GLOBAL

OPTIMIZATION1

J. ŽILINSKAS

Institute of Mathematics and Informatics

Akademijos 4, LT-08663 Vilnius, Lithuania

E-mail: julius.zilinskas@mii.lt

Abstract. A package for development of algorithms for global optimization is
proposed in this paper to ease implementation of covering methods for global opti-
mization. Standard parts of global optimization algorithms are implemented in the
package and only method specific rules should be implemented by the user. Some
examples of using the proposed package are given.

Key words: Global optimization, branch and bound algorithms

1. Introduction

Global optimization is used to solve practical problems across all branches
of engineering, applied sciences and sciences [1]. Application of algorithms
to solve practical problems crucially depends on efficiency and reliability of
algorithms implementing global optimization methods. However development
of such algorithms is not trivial.

The paper presents a C++ package for development of algorithms im-
plementing covering global optimization methods. Global optimization al-
gorithms based on interval arithmetic and balanced random interval arith-
metic [8] has been implemented using the proposed package and results are
given in the paper.

When computing power of usual computers is not sufficient to solve a prac-
tical global optimization problem, the high performance parallel computers
may be helpful. Because of that tools for parallelization of global optimiza-
tion algorithms have been included in the proposed package. A standardized
message-passing communication protocol MPI [2] is used for communication
between processors. Results of parallelization of interval global optimization
algorithm are given in the paper.

1 The research is supported by NATO Reintegration Grant EAP.RIG.981300.

186 J. Žilinskas

Cover feasible region D by L = {Lj |D ⊆
S

Lj , j = 1, m} using covering rule.
UB(D) = ∞.
while subproblem list is not empty L 6= ∅ do

Choose I ∈ L using selection rule, exclude I from L.
if LB(I) < UB(D) + ε then

Branch I into p subsets Ij using branching rule.
Find UB(Ij

T

D) and LB(Ij) using bounding rules.
UB(D) = min(UB(D), UB(Ij

T

D)|j = 1, p).
L = {L, Ij |LB(Ij) < UB(D) + ε, j = 1, p}.

Figure 1. General branch and bound algorithm.

2. Covering Global Optimization

Many problems in engineering, physics, economic and other subjects may be
formulated as global optimization problems. Mathematically the problem is
formulated as

f∗ = min
X∈D

f(X),

where f(X) is a nonlinear function of continuous variables f : <n → <, D ⊆

<n is a feasible region, n is number of variables. Besides of global minimum
f∗, one or all global minimizers X∗ : f(X∗) = f∗ should be found.

One of the classes of global optimization methodsare covering methods.
Covering methods can solve global optimization problems of some classes with
guaranteed accuracy. Covering methods detect the sub-regions not containing
the global minimum and discard them from further search. The partitioning
of the sub-regions stops when global minimizers are bracketed in small sub-
regions guaranteeing the prescribed accuracy. A lower bound for the objective
function over the sub-region may be used to indicate the sub-regions who
can be discarded. Some methods are based on lower bound constructed as
convex envelope of an objective function [1]. Lipschitz optimization is based
on assumption that the slope of an objective function is bounded [5]. Interval
methods estimate the range of an objective function over a sub-region defined
by a multidimensional interval using interval arithmetic [4].

A branch and bound technique can be used for managing the list of sub-
regions and the process of discarding and partitioning. An iteration of a clas-
sical sequential branch and bound algorithm processes a node in the search
tree representing a not yet explored sub-region of the feasible region. Iteration
has three main components: selection of the node to process, branching of the
search tree by dividing the selected sub-region and bounding of the branches
by discarding not promising sub-regions. The rules of selection, branching and
bounding differ from algorithm to algorithm. The general branch and bound
algorithm for global optimization is shown in Figure 1. Before the cycle, the
feasible region is covered by one or several partitions whose are added to the
list of candidates L.

The rules of covering and branching depend on type of partitions used.
The bounding rule describes how the bounds of minimum are found. For the

A Package for Development of Algorithms for Global Optimization 187

upper bound for minimum over feasible region UB(D) the best currently found
value of objective function might be accepted. The lower bound for values of
objective function over considered sub-region LB(I) may be estimated using
convex envelopes, Lipschitz condition or interval arithmetic.

There are three main strategies of selection:

• Best first – select an element of L with minimal lower bound. Candidate
list can be implemented using heap and priority queue.

• Depth first – select the youngest element of L. First-In-Last-Out structure
is used for candidate list which can be implemented using stack.

• Breadth first – select the oldest element of L. First-In-First-Out structure
is used for candidate list which can be implemented using queue.

Application of algorithms to solve practical problems crucially depends
on efficiency and reliability of algorithms implementing global optimization
methods. Development of such algorithms is not trivial. However, branch and
bound algorithms for global optimization have general scheme and differ only
by rules of covering, selection, branching and bounding. Therefore we propose
a package for development of algorithms for covering global optimization,
where only particular rules should be implemented.

3. Description of the Package for Global Optimization

A C++ package for development of algorithms for covering global optimiza-
tion methods have been implemented. Only the method specific rules, for
example evaluation of bounds for the values of the objective function over the
sub-region, should be implemented by the user. The package includes:

• Vector templates to define feasible region and sub-regions.
• Heap and queue templates to define lists of tasks and solutions. Heap is

used for list of tasks when ‘best first’ selection rule is used, queue is used
for list of solutions and list of tasks when ‘breadth first’ selection rule is
used.

• Implementation of timer for measuring speed of algorithms. Time is impor-
tant criterion to measure performance of global optimization algorithms.

• Implementation of branch and bound algorithm. Parallel Master-Slave ver-
sion of branch and bound is also implemented.

Sizes of C++ codes implementing the proposed package are given in Table 1.

4. Case Studies

Implementation of the list of candidates is one of important factors of perfor-
mance of branch and bound algorithms. Implementation of stack and queue
for ‘depth first’ and ‘breadth first’ selection is trivial. Time of insertion and
deletion of element to/form such type of structure does not depend on number
of elements in the list. However the list of candidates for ‘best first’ selection

188 J. Žilinskas

Table 1. Size of implementations in the package.

Part of package lines words characters

Vector template 119 571 3442
Queue template 139 466 3001
Heap template 161 563 3946
Timer 158 470 3581
Key pressed check 46 114 1005
Branch and bound algorithm 455 1768 13727

Total 1078 3952 28702

requires selection of candidate with the smallest value. Priority queue is often
used for this purpose, for example in PROFIL V 2.0 [6] implementation of the
global unconstrained minimization method involving a combination of local
search, branch and bound technique and interval arithmetic, and in CTool-
box (C++ toolbox for verified computing) [3] which is a library for problem-
solving routines covering one-dimensional and multi-dimensional problems:
accurate evaluation of polynomials, automatic differentiation, linear and non-
linear systems of equations, linear optimization, global optimization, and zeros
of complex polynomials.

Although time of selection and deletion of element from the priority queue
does not depend on the number of elements in the list, the worst case inser-
tion time linearly depends on the number of elements. Because of this priority
queue implementation can be usable only for solving small example prob-
lems where the largest number of candidates in the list is small. For most of
optimization problems the list of candidates grows rapidly and insertion of
elements to the list of candidates can take even more time than calculation
of bounds which is supposed to be the most time consuming part of branch
and bound algorithms. ‘Depth first’ and ‘breadth first’ selection strategies can
perform better than ‘best first’ because of efficient implementation of the list
of candidates, but not because the number of investigated nodes is smaller.
Parallel branch and bound with priority queue implementation of the list of
candidates can have better speedup because of reduced time of insertion af-
ter distribution of the list of candidates, but not because of excellent load
balancing.

Some of the mentioned problems can be at least partly avoided by using
heap structure, which is a complete binary tree where each node has larger
value of criterion than its parent. Heap and priority queue are implemented in
the proposed template. To compare performance of heap and priority queue,
lists of different sizes have been constructed inserting elements with random
keys. The sum times of construction (insertion of elements) and use (selec-
tion/deletion of elements) for different sizes of lists have been measured and
are shown in Figure 2. The figure shows that priority queue and 100 times
larger heap have similar construction and deletion time. This strongly sug-
gests use of heap structure for implementation of the list of candidates for
‘best first’ selection.

A Package for Development of Algorithms for Global Optimization 189

size of heap

tim
e,

 s

0.0 5000000
0.0

200

size of queue

tim
e,

 s

0.0 50000
0.0

250

Figure 2. Comparison of performance of heap and priority queue when inserting
elements with random keys.

Table 2. Sizes of implementations of algorithms for global optimization.

Algorithm lines words characters

with interval arithmetic 197 755 5917
with balanced random interval arithmetic 202 782 6074
with bounds with controllable tightness 195 776 6781

Global optimization algorithms based on interval arithmetic [4] and bal-
anced random interval arithmetic [8] have been implemented using the pro-
posed package. Algorithms use interval bounds for objective function and
interval derivatives for tests of monotonicity and convexity. Sizes of imple-
mentations using proposed packages are shown in Table 2. The numbers do
not include implementations of interval arithmetic, because it is implemented
in independent package. As it can be seen from the numbers, implementation
of particular algorithm with the proposed package is 5 times smaller than
implementation of the package.

Size of implementation of algorithm with bounds with controllable tight-
ness is also shown in Table 2. Again implementation of this algorithm with
the proposed package is 5 times smaller than implementation of the package.
This algorithm has been used to investigate influence of tightness of bounds
to performance of optimization in [7]. The algorithm uses exact bounds found
minimizing and maximizing objective function over considered sub-regions
using algorithm with interval arithmetic mentioned above. The investigation
is computing intensive, therefore parallelization tools of proposed package
has been very helpful. The criteria of parallelization of algorithm for several
test functions [7] are shown in Figure 3. For some simple test functions, par-
allelization efficiency was low. However, these functions can be successfully
investigated by a sequential algorithm. For other functions improvement is
evident, and parallelization significantly speeds up the experiments.

190 J. Žilinskas

number of processors

sp
ee

du
p

1 14
0

14

number of processors

ef
fi

ci
en

cy

1 14
0

1

Figure 3. Criteria of parallelization of algorithm with controllable bounds.

5. Conclusions

A C++ package for development of algorithms for covering global optimiza-
tion methods has been implemented. Heap structure for implementation of the
list of candidates for ‘best first’ selection is preferable because its performance
is more than 100 times better than one of priority queue. C++ code imple-
menting particular algorithm with the proposed package is 5 times smaller
than C++ code of the package. Parallelization tools of proposed package are
very helpful.

References

[1] C.A. Floudas. Deterministic Global Optimization: Theory, Methods and Ap-

plications, volume 37 of Nonconvex Optimization and its Applications. Kluwer
Academic Publishers, 2000.

[2] Message Passing Interface Forum. MPI: A message-passing interface standard
(version 1.1). Technical report, 1995.

[3] R. Hammer, M. Hocks, U. Kulish and D.Ratz. C++ Toolbox for Verified Com-

puting: Basic Numerical Problems. Springer, Berlin, 1995.
[4] E. Hansen and G.W. Walster. Global Optimization Using Interval Analysis.

Marcel Dekker, New York, 2nd edition, 2003.
[5] R. Horst, P.M. Pardalos and N.V. Thoai. Introduction to Global Optimization,

volume 48 of Nonconvex Optimization and its Applications. Kluwer Academic
Publishers, 2nd edition, 2001.

[6] O. Knüppel. PROFIL/BIAS V 2.0. Technical Report 99.1, Technische Univer-
sität Hamburg-Harburg, 1999.

[7] A. Žilinskas and J. Žilinskas. On efficiency of tightening bounds in interval global
optimization. In: PARA’04 Workshop on State-of-the-Art in Scientific Comput-

ing, June 20-23, 2004, Lyngby, Lecture Notes in Computer Science, 2005.
[8] J. Žilinskas and I. D. L. Bogle. Balanced random interval arithmetic. Computers

& Chemical Engineering, 28(5), 839–851, 2004.

