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Abstract. Two-point problem for the fourth-order Emden-Fowler equation is con-
sidered. If the given equation can be reduced to a quasi-linear one with a non-
resonant linear part so that both equations are equivalent in some domain D, and
if solution of the quasi-linear problem is located in D, then the original problem
has a solution. We show that a quasi-linear problem has a solution of definite type
which corresponds to the type of the linear part. If quasilinearization is possible for
essentially different linear parts, then the original problem has multiple solutions.
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1. Introduction

Consider the nonlinear differential equation

x(4) = f(t, x), t ∈ I := [0, 1], (1.1)

with the boundary conditions

x(0) = x′(0) = 0 = x(1) = x′(1). (1.2)

Function f : I×R → R is supposed to be continuous together with the partial
derivative fx. Then the unique solvability of the Cauchy problem

x(0) = x0, x′(0) = x1, x′′(0) = x2, x′′′(0) = x3

is ensured as well as the continuous dependence of solutions on initial data.
Our research is motivated by the papers of R. Conti [1] and L. Erbe [2],
who studied oscillatory properties of solutions of two-point boundary value
problems.
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Consider also the quasi-linear equation
(

L4x
)

(t) := x(4) − k4x = F (t, x), (1.3)

where F, Fx, : I×R → R are continuous and F is bounded, that is, there exists
M ∈ (0, +∞) such that |F (t, x, )| < M ∀(t, x) ∈ I × R. If the linear part
(

L4x
)

(t) := x(4) − k4x is non-resonant with respect to the given boundary
conditions (1.2), that is, the homogeneous problem (L4x)(t) = 0, (1.2) has
only the trivial solution, then problem (1.3), (1.2) is solvable. Suppose that
equations (1.1) and (1.3) are equivalent in a domain

D(t, x) = {(t, x) : 0 ≤ t ≤ 1, |x| ≤ N}.

If any solution x(t) of the problem (1.3), (1.2) is located in this domain of
equivalence D(t, x), in the other words, if the solution x(t) satisfies the esti-
mate

|x(t)| ≤ N ∀t ∈ I, (1.4)

then it solves also the problem (1.1), (1.2). We will say for brevity that the
problem (1.1), (1.2) allows for quasilinearization with respect to the linear
part (L4x)(t).

If the equation (1.1) can be reduced to another quasi-linear equation
(

l4x
)

(t) = F1(t, x), (1.5)

which is equivalent to (1.1) in another domain D1(t, x), then the original
problem (1.1), (1.2) in some cases has another solution x1(t) ∈ D1(t, x). In
this way one can obtain the multiplicity results [4].

2. Quasi-Linear Problems and Types of Solution

We first prove results for quasi-linear problems of the type (1.3), (1.2) if the
following condition is satisfied for any (t, x)

k4 +
∂F

∂x
(t, x) > 0. (2.1)

In our investigation we use the oscillation theory by Leighton-Nehari for the
fourth-order linear differential equations [3]. We use their definition of a con-
jugate point.

Definition 1. A point η is called a conjugate point for the point t = 0, if
there exists a nontrivial solution x(t) such that

x(0) = x′(0) = 0 = x(η) = x′(η).

The conjugate points (or double zeros) in the oscillation theory for the
fourth-order linear differential equations play the same role as the ordinary
zeros in the oscillation theory for the second-order equations.

We define i-nonresonanse of the linear part and an i-type solution similarly
as for the second-order quasi-linear problems [4, 5].
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Definition 2. We will say that the linear part

(L4x)(t) := x(4) − k4x

is i-nonresonant with respect to the boundary conditions (1.2), if there are
exactly i conjugate points in the interval (0, 1) and t = 1 is not a conjugate
point.

Definition 3. We will say that ξ(t) is an i-type solution of the problem (1.3),
(1.2), if for small enough α, β > 0 the difference u(t; α, β) = x(t; α, β) − ξ(t)
has exactly i double zeros ( or conjugate points) in the interval (0, 1) and
u(1; α, β) 6= 0, where x(t; α, β) is a solution of (1.3), which satisfies the initial
conditions

x(0; α, β) = ξ(0), x′(0; α, β) = ξ′(0), (2.2)

x′′(0; α, β) = ξ′′(0) + α, x′′′(0; α, β) = ξ′′′(0) − β. (2.3)

In what follows we call the solution x(t; α, β) by neighbouring solution.

Remark 1. An i-type solution ξ(t) of the problem (1.3), (1.2) has the following
characteristics in terms of the variational equation: if a linear equation of
variations

y(4) − k4y = Fx(t, ξ(t))y

has exactly i conjugate points in the interval (0, 1) and t = 1 is not a conjugate
point, then ξ(t) is an i-type solution. However, if t = 1 is a conjugate point,
then ξ(t) may be an i-type solution, or it may be an (i + 1)-type solution, or
its type may be indefinite. The respective examples can be constructed.

The following theorem is valid.

Theorem 1. The quasi-linear problem (1.3), (1.2) has an i-type solution, if

the condition (2.1) is fulfilled and the linear part (L4x)(t) = x(4) − k4x is

i-nonresonant.

3. Emden-Fowler Equation

We apply Theorem 1 to the problem

x(4) = λ2 |x|p signx, (3.1)

where λ 6= 0, p > 0, p 6= 1, with the boundary conditions (1.2).

First we consider the linear equation

x(4) − k4x = 0, (3.2)

where k satisfies the non-resonance condition cos k cosh k 6= 1.
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Suppose that there exist n conjugate points for equation (3.2). We can
construct the Green’s function Gk(t, s) for the problem (3.2), (1.2). Let de-
note by Γk some number greater than sup

t,s∈[0, 1]

∣

∣Gk(t, s)
∣

∣. Choose Nk > 0 and

consider the corresponding quasi-linear equation

x(4) − k4x = ϕ(x) {λ2 |x|p signx − k4x} =: fk(x), (3.3)

where ϕ = 1, if |x(t)| ≤ Nk and fk(x) (that is the right side in (3.3)) is smooth
and bounded by Mk > 0.

Quasi-linear problem (3.3), (1.2) can be written in the integral form

x(t) =

1
∫

0

Gk(t, s)fk(x(s)) ds,

from which it follows that
∣

∣x(t)
∣

∣ ≤ Γk Mk.

If moreover the inequality
Γk Mk < Nk (3.4)

holds, then equations (3.1) and (3.3) are equivalent in the domain

Ωk = {(t, x) : 0 ≤ t ≤ 1, |x| < Nk}.
By Theorem 1 , the problem (3.3), (1.2) has a solution of n-type xn(t). Since,
by (3.4)

∣

∣xn(t)
∣

∣ < Nk ∀t ∈ I

this solution xn(t) solves also the original problem (3.1), (1.2). If this proce-
dure can be applied multiply (with essentially different linear parts), then the
problem (3.1), (1.2) is shown to have multiple solutions.

4. Green’s Function

As a by-product, we have constructed the Green’s function for the oscillatory
fourth-order linear problem

{

x(4) − k4x = 0,

x(0) = x′(0) = 0 = x(1) = x′(1)
(4.1)

and we give the formula and the estimate below.

Proposition 1. The Green’s function of the problem (4.1), is given by

Gk(t, s) =



































1

∆

(

− u∗(t, s) · v(1) − u(1) · v∗(t, s) +
∑

τ=s, t

[

u(τ) · v(t + s − τ)

−u(τ − 1) · v(t + s − 1− τ) − u(t − τ) · v(τ − s)
])

, 0 ≤ s ≤ t ≤ 1,

1

∆

(

− u∗(s, t) · v(1) − u(1) · v∗(s, t) +
∑

τ=s, t

[

u(τ) · v(t + s − τ)

−u(τ − 1) · v(t + s − 1− τ) + u(t − τ) · v(τ − s)
])

, 0 ≤ t < s ≤ 1,
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where ∆ = 4k3(cos k cosh k − 1) and u, v are vector-functions such, that

u(τ) = [− sin kτ, cos kτ ], v(τ) = [cosh kτ, sinh kτ ],

u∗(t, s) = [− sin k(s − t + 1), cos k(t + s − 1)],

v∗(t, s) = [cosh k(t + s − 1), sinh k(s − t + 1)],

and the u · v denotes the scalar product as usually.

Proposition 2. The Green’s function Gk(t, s) can be estimated by

∣

∣Gk(t, s)
∣

∣ ≤ (5 +
√

2)
√

cosh 2k + sinh k + 1

4k3
∣

∣ cos k cosh k − 1
∣

∣

=: Γk. (4.2)

We can improve this estimate for some numbers k. If k = πn, n ≥ 1,

Green’s function Gk(t, s) can be simplified and we obtain the following esti-
mates

∣

∣Gk(t, s)
∣

∣ ≤ (1 +
√

2)ek

k3(ek + 1)
=: Γ1(k), if k = (2n − 1)π, (4.3)

∣

∣Gk(t, s)
∣

∣ ≤ (1 +
√

2)ek

k3(ek − 1)
=: Γ2(k), if k = 2nπ. (4.4)

5. Applications

Let us return to the problem under consideration

{

x(4) = λ2|x|p signx,

x(0) = x′(0) = 0 = x(1) = x′(1),

or
{

x(4) − k4x = ϕ(x){λ2|x|p sign x − k4x} =: fk(x),

x(0) = x′(0) = 0 = x(1) = x′(1).

We can choose Nk =
(k4

λ2

)
1

p−1

β, where β is a unique positive root of the

equation
βp = β + (p − 1)p

p

1−p .

Then Mk, which bounds fk(x), is an absolute value of this function at the
point of extremum. It can be calculated

Mk = λ
2

1−p

(k4

p

)

p

p−1 |p − 1|.

So the inequality Γk Mk < Nk turns to

k
(1 +

√
2)ek

(ek + 1)
< β

p
p

p−1

|p − 1| , for k = (2n − 1)π, (5.1)
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k
(1 +

√
2)ek

(ek − 1)
< β

p
p

p−1

|p − 1| , for k = 2nπ. (5.2)

We have obtained the results of calculations . They are shown that certain
values of k in the form k = πn, n = 1, 2 . . . are good for the inequalities (5.1)
and (5.2) to be satisfied. For instance, if p = 8

7 , then there exist three values
of k, which satisfy the inequalities above, it means that there exist at least
three solutions of the different types.

We have constructed the different solutions for the Emden-Fowler equation

{

x(4) = 810 · |x| 87 sign x,

x(0) = x′(0) = 0 = x(1) = x′(1).
(5.3)
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Figure 1. a - 0-type solution, b - 1-type solution, c - 2-type solution of the problem
(5.3).

The solid line in Fig. 1 indicates a solution of the problem (5.3) and dashed
line – the corresponding neighbouring solution (see Definition 3). The solu-
tions of the different types have different oscillatory properties and initial
data.

This is a joint work with F. Sadyrbaev (Institute of Mathematics and
Computer Science, University of Latvia).
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