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Abstract. This paper paper discusses accuracy of WENO reconstruction used for
unstructured grids and applied to two common discretization approaches within
Finite Volume Method (FVM), Cell Centered and Vertex Centered methods. The
numerical results are shown for 3D transonic flow around ONERA M6 wing.
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1. Introduction

Effective simulation of compressible (transonic) flows around complex 3D ge-
ometries remains a difficult task. This is especially so, when accurate pre-
dictions of integral coefficients (drag and lift) are required. In particular the
drag coefficient is very sensitive to spurious entropy generated by the numer-
ical scheme. As a result the numerical discretization has to fulfill a series of
conditions:

• full conservation of mass, momentum and total energy,
• high–order of accuracy in the regions where the solution is continuous,
• oscillation-free behaviour in the vicinity of shock–waves and slip–lines.

The latter two conditions remain in a direct conflict (due to the Godunov
barrier) if linear discretization scheme is used.

For the Finite Volume method the conservation property is automatically
fulfilled. In its Cell-Centered version the unknowns are located at the cell cen-
ters. In order to calculate fluxes at the cell walls, the solution is reconstructed
within each cell using the information from its direct neighbourhood. In the
Vertex Centered version the unknowns are located at the mesh nodes. In or-
der to avoid oscillations on discontinuities, WENO (Weighted Essentially Non

Oscillatory) schemes are used. This approach introduced in [1, 2, 3, 4, 5, 6]
is suitable for general unstructured/hybrid grids and overcomes limitations
typical for classical MUSCLE schemes.
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2. Finite Volume Scheme

The Euler model of fluid is used in the present paper. The equations in con-
servative form can be expressed as:

∂U

∂t
+ ∇F (U) = 0, (2.1)
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ρ is the density, v the velocity vector, E energy, p pressure, h enthalpy.

Integrating (2.1) over the control volume Ωh one obtains:

d

dt

∫

Ωh

UdΩ = −

∫

∂Ωh

F (U) · n ds. (2.2)

Taking further Ũ as cell average value of U Eq. (2.2) can be rewritten as:

d

dt
Ũ = −

1

|Ωh|

∑

j

F
?
j , (2.3)

where F
?
j is the numerical flux which must be calculated using U at each cell

face rather than the averaged value taken from the cell center.

Collection of equations (2.3) written for all control volumes forms a system
of nonlinear differential equations. In the present paper only a stationary case
is considered. In the cell–centered version control volumes coincide with mesh
cells. In the vertex–centered version control volumes are built around mesh
nodes (similarly as dual cells are built in the Voronoi diagram).

3. Weighted Essentially Non–Oscillatory Schemes

The calculation of F
?
j relies on values at the boundary of the control volume.

Since only average values Ũ are known, it is necessary to reconstruct the
function U (x) inside the control volume.

The linear reconstruction function valid inside the i-th control volume can
be expressed (xi denotes center of gravity of i-th cell) as:

U(x) = Ũi + [∇U ]i · (x − xi), (3.1)

where gradient [∇U ]i has to be evaluated using the average function values
from the neighbouring cells. The main difficulty is caused by the fact that
the solution contains discontinuities (e.g., shockwaves, slip lines). Standard
approaches (like central schemes) lead to oscillations in the vicinity of the
discontinuity, therefore special treatment is necessary.

In contrast reconstruction based on the WENO scheme weights gradients
obtained from neighbouring stencils in order to continuously eliminate these
which cause oscillations.
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3.1. Multidimensional WENO reconstruction

A typical WENO finite volume scheme can be constructed as follows (for
scalar function P ):

- Identify several stencils S1, S2, S3 · · · , Sm for a control volume Ωh consist-
ing of the neighbouring control volumes, such that the control volume Ωh

belongs to each stencil.
- Obtain a lower order reconstruction polynomial, denoted by Pi and asso-

ciated with stencil Si, which approximates solution on Ωh. This point is
modified for Extended WENO reconstruction.

- Calculate oscillation indicator oi for each function Pi.
- Calculate weights for each Pi using oscillation indicator oi.
- Find global reconstruction function for a control volume Ωh as a weighted

average of all Pi.

3.2. Calculation of nonlinear weights based on the smoothness

measurement

The reconstruction function for each control volume is defined as a weighted
average:

P =
m

∑

i=1

ωi · Pi.

Oscillation indicator can be defined as:

oi =‖ ∇P ‖2,

while the weights are calculated using algebraic formula

ωi =
(ε + oi)

−r

∑M

i=1
(ε + oi)−r

. (3.2)

3.3. First order method for gradient reconstruction

We shall assume now that ϕp denotes function value at the p-th cell (p=0 cor-
responds to the cell in which gradient is reconstructed). The Taylor expansion
formula can be written as:

ϕp − ϕ0 = −→r T
p0
∇ϕ|0 +

1

2
−→r T

p0
∇2ϕ|0

−→r p0 + O
(

h3
)

, (3.3)

where −→r p0 = −→r p − −→r 0 denotes vector joining respective cell centres and h

denotes the characteristic distance between centres of neighbouring cells.
Gradient will be approximated as a linear combination of the valuable function
ϕ increments:

−→
G (ϕ) =

m
∑

p=1

−→
Gpwp (ϕp − ϕ0) + O

(

h2
)

, (3.4)
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where wp are the known weights (not to be confused with WENO weights
(3.2)) and m denotes number of available stencils (m=4 on 3D tetrahedral

meshes). Usually wp is taken equal to ‖−→r p0‖
−1, so that the coefficients

−→
Gp

are ”dimensionless”.

The unknown coefficients
−→
Gp, depend only on the local geometry of the

mesh. In order to find
−→
Gp (3.4) is substituted into (3.3)

−→
G (ϕ) =

[

m
∑

p=1

−→
Gpwp

−→r T
p0

]

∇ϕ|0 +
m

∑

p=1

−→
Gpwp

−→r T
p0
∇2ϕ|0

−→r p0 + . . . (3.5)

In the formula above
−→
Gp represents gradient only if the expression in

brackets forms an identity matrix (the second term describes the error of

the formula). Finding
−→
Gp requires solving a number of local under/over–

determined linear systems. This is done by applying a sequence of Householder
transformations. This requirement can be expressed in general as:

∀−→ν ∈ RN

m
∑

p=1

−→
Gpwp

−→r T
p0

−→ν = −→ν , (3.6)

or using the basis
{−→

e1 ,
−→
e2 , . . . ,

−→
eN

}

in R
N one obtains a system of linear

equations:

m
∑

p=1

−→
Gpwp

−→r T
p0

−→e s = −→e s, s = 1, 2, . . . , N,

with m N scalar unknowns and N2 equations. The number of available stencils
m is larger than the space dimension, therefore the system is solved in the
least–square sense which minimise the L2 norm of the obtained solution. This
explains why weights introduced in (3.4) are indeed necessary.

4. Numerical Results

4.1. Transonic flow past M6 ONERA wing

The test case used for comparison of CC and VC FVM is the flow past M6
ONERA wing with Mach number at infinity equal to 0.84. For such a flow
two oblique shock waves merge near the tip of the wing on the upper surface.

Additional results obtained by the code THOR based on the Residual Dis-
tributions Schemes [1] and developed in Von Karman Institute [5], were used
as the reference for quantitative comparison. All calculations were performed
on the same grid which consisted of 316275 nodes, 1940182 cells, 2289199
edges and 3913107 faces.

The comparison of Figures 1 and 2 shows that solution obtained by VC
FVM method remains much more dissipative. The shock waves are sharper
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Figure 1. Pressure coefficient for different sections of M6 ONERA wing (η denotes
the relative position of the cross section), Ma=0.84, α=3.04.
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Figure 2. Total pressure loss for different sections of M6 ONERA wing (η denotes
the relative position of the cross section), Ma=0.84, α=3.04.

and more distinct in the CC FVM solution. It is also visible in the quantitative
comparison of the cp coefficient (Fig. 1) and of the total pressure loss (Fig. 2).
The latter quantity corresponds directly to the error of the method. According
to theory, total pressure should be constant everywhere with exception of
shockwaves where it should increase. The parameter q∗ presented in Fig. 1 is
defined as:

q∗ =
q

q∞
− 1,
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where q and q∞ denote total pressure at a given point and at infinity, respec-
tively.

5. Conclusions

• FVM with WENO reconstruction gives for both versions of the method
(CC and VC) results which are qualitatively correct. The solution near
shock–waves remains oscillation-free. Shock waves remain smeared over
1-3 cells only.

• Cell Centered discretization provides better resolution of shockwaves and
other flow features, than its Vertex Centered counterpart. It provides also
better overall accuracy and generates significantly smaller amount of spu-
rious entropy. For the transonic flow around ONERA M6 wing, CC dis-
cretization is almost as accurate as the Residual Distribution Scheme (im-
plemented in the VKI Thor code).
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