
Mathematical Modelling and Analysis 2005. Pages 179–184

Proceedings of the 10th International Conference MMA2005&CMAM2, Trakai

c© 2005 Technika ISBN 9986-05-924-0

PREDICTING PARALLEL EFFICIENCY IN

COMPUTATIONAL FLUID DYNAMICS

J. ROKICKI, M. KRAUSE AND M. WICHULSKI

Institute of Aeronautics and Applied Mechanics,

Warsaw University of Technology

Nowowiejska 24, 00-665 Warsaw, Poland

E-mail: [jack,mkrause,wichulski]@meil.pw.edu.pl

Abstract. The paper discusses the performance of parallelization in Computa-
tional Fluid Dynamics. A theoretical model is presented for parallelization based on
domain decomposition. Such model allows for quantitative prediction of speed-up
and efficiency. Finally, certain unresolved problems related to grid environment are
reported.

Key words: CFD, parallelization, prediction of the efficiency

1. Introduction

In Computational Fluid Dynamics, flow simulations consist of a long sequence
of consecutive iterations which aim to solve a very large system of nonlinear
algebraic equations. The number of equations is equal to 5N , where N denotes
the number of mesh cells. These equations stem from discretized Euler/Navier-
Stokes partial differential equations, governing the fluid motion.

Typical computational meshes contain millions of cells, but even such de-
tailed spatial resolution is still not sufficient to effectively predict certain phe-
nomena. Reduction of computational time is possible (at the present level of
algorithm development), only through application of parallel processing.

The present paper deals with parallelization based on domain decomposi-
tion [2]. This means, that prior to the actual calculations, the computational
mesh is divided into parts each of which is served by a different processor.
The exchange of boundary information (on fictitious interfaces) occurs at ev-
ery nonlinear iteration step of the main solution algorithm. This exchange
is limited to the information available in the immediate neighborhood of the
fictitious boundary.

The parallel efficiency of this procedure depends on:



180 J. Rokicki, M. Krause, M. Wichulski

– proper load balancing between processors,

– limiting the volume of communication,

– speed/bandwidth ratio.

In the present paper these issues are discussed and theoretical model of such
parallelization is presented. The model allows for quantitative predictions of
speed-up and efficiency (as a function both of the problem size and number
of processors used). Load balancing issues are discussed for both structured
and unstructured meshes.

The results and conclusions are formulated for the particular problem and
particular CFD method (described in [1]). It is evident however that they re-
main valid for many problems of mathematical physics, described by nonlinear
partial differential equations.

2. Parallel Algorithm

The parallel algorithm consist of the following steps:

1. Each node initializes calculations reading its own grid and restart files
(the latter only in the restart mode) as well as configuration file.

2. Communication is initialized by preparing and exchanging information
about the size of the future data packets (for each pair of neighbouring
nodes).

3. Each node performs separately one (or more) iteration(s) of the local
nonlinear solver (on its own part of the mesh).

4. The interfacial boundary information is exchanged between all neighbour-
ing nodes. The boundary conditions at each node are updated.

5. The convergence criterion is checked at each node, subsequently reduced
(logical AND) and the result is scattered to all nodes. If FALSE is re-
turned, the control goes back to step 3.

6. Communication link is terminated and each node stores the corresponding
restart and solution output files.

In the above, the neighbourhood is understood in the sense of mesh par-
tition topology. The nodes are considered as neighbours if their meshes have
a common interface (or overlap as it was the case in [2]).

The main computational effort corresponds to the step 3 of the algorithm.
This effort can be assumed proportional to the number of mesh cells, perhaps
with the exception of the vicinity of the physical boundary, where the com-
putational cost can be higher (this however will be disregarded in the further
analysis below).

The main communication effort is located in step 4 and is proportional
to the length of the data packet (the latency is not significant in this case).
The communication presented in step 5 can also be neglected as its volume
is negligible in comparison with the one in step 4 (at least for a moderate
number of processors used in computations).



Predicting Parallel Efficiency in CFD 181

The workload of each processor is proportional to the number of cells
presented in its local mesh. Thus with N denoting the total number of mesh
cells and assuming ideal load balancing we can estimate the computation time
on the L-processor system by:

τCOMP[L] =
A N

L
, (2.1)

where A stands for the proportionality factor (which can depend both on the
algorithm as well as on the processor speed).

3. Communication Models

Two possible communication models are considered here.
The first model is based on the master-worker concept. In this approach

one of the nodes, master is responsible for gathering, re-calculating and scat-
tering data that is exchanged between nodes (workers) (see Fig. 1).

master

worker worker worker

@
@

@
@

�
�

�
�

Figure 1. Master-worker communica-
tion.

node node

node node
��������

Figure 2. Neighbour to neighbour com-
munication.

In contrast neighbour to neighbour approach assumes that communication
exists between these nodes which have common interface, without the need
for a centralized control (see Fig. 2).

Here simultaneous exchange of data between various nodes allows for sig-
nificant reduction of communication overhead. Both approaches can be rooted
in the solution algorithm. Yet the success of implementation heavily depends
on the communication hardware.

In particular in clusters, the computing nodes are in fact connected via a
single switching device. Therefore efficiency of neighbour to neighbour commu-
nication will be limited by the switch ability to simultaneously transmit data
between separate pairs of nodes. This hardware arrangement typical for clus-
ters is present also in some shared memory architectures where fast switching
devices connect computing nodes with separate memory banks (e.g., Compaq
ES40).

4. Performance Analysis

The performance of algorithm described in Section 2. can be evaluated by
considering average time τ [L] necessary to perform single iteration (steps 3,



182 J. Rokicki, M. Krause, M. Wichulski

4, 5) (L denotes number of processors). In the present analysis, it is tacitly
assumed that the overall computational effort and total number of iterations
do not depend on the number of processors.

4.1. Communication time

Communication time depends on the range of factors and in particular on:
(i) numerical algorithm, (ii) dimension of the computational problem (2D
or 3D), (iii) quality of partition into subdomains, (iv) communication model
master-worker or neighbour to neighbour, (v) hardware properties.

All of these issues cannot be reasonably included into the present analysis.
Instead we aim at obtaining some optimal estimation, e.g., when partition into
subdomains minimizes and evenly distributes the communication volume.

We assume that the communication volume assigned to each processor is
proportional to the number of interfacial (boundary) cells in each local mesh
[1]. In particular in 2D space, the checker-board partition of a rectangular do-
main results in a number of interfacial cells (per computing node) proportional
to

√

N/L. In contrast partition into stripes increases this result to
√

N .
In 3D space the partition of the cubic domain into smaller cubes gives the

number of interfacial cells (per computing node) proportional to (N/L)2/3.
Again this partition can be regarded as optimal.

The communication time can thus be estimated as:

τCOMM[L] = Bd,µ

(

N

L

)

d−1

d

Lµ + τLAT

where in the above: (i) τLAT stands for latency, (ii) d = 2, 3 denotes the
dimension of the problem, (iii) µ is equal 0 in case of the successful neighbour

to neighbour model and is equal 1 for the master-worker model, (iv) Bd,µ is
a proportionality constant depending both on the space dimension as well as
on the communication model.

It is worth stressing that for master-worker approach the communication
time depends on the total communication volume (hence µ = 1) whereas for
the neighbour to neighbour model only local communication has to be taken
into account (hence µ = 0). As a result the communication time increases
with the number of processors for the first approach and decreases for the
latter approach.

4.2. Parallel efficiency

Taking into account all considered subcases parallel efficiency can be estimated
as:

η[L] =
1

L

τCOMP[1]

τCOMP[L] + τCOMM[L]
=

1

β[L] + L
AN

[

BN1−1/dLµ−1/d + τLAT

] ,

(4.1)
where for clarity reasons subscripts of the proportionality constant B are
dropped.



Predicting Parallel Efficiency in CFD 183

For large problems when latency is negligible and by assuming ideal load
balancing one obtains a simple formula for efficiency:

η[L] =
1

1 + L1+µ−1/dN−1/dB/A
. (4.2)

Formula (4.2) allows us in turn to obtain the isoefficiency function of the
parallel algorithm

N [η, L] =

(

B

A

)d

Ld(1+µ)−1

(

η

η − 1

)d

. (4.3)

In particular, for the master-worker model keeping fixed efficiency is pos-
sible by increasing problem size N proportionally to L3 in 2D and to L5 in
3D. For the neighbour to neighbour model the same effect is obtained if prob-
lem size grows as L1 in 2D and to L2 in 3D. This is why the latter seems so
attractive from the point of view of the parallel program design.

The current formulas (4.2) and (4.3) form a generalization of the one
presented and verified in [2] for d = 2, µ = 1 and for L = 2, . . ., 21.

5. Parallelization in Grid Environment

Traditional parallelization is characterized by the requirement to distribute
computations over separate processors belonging to a single system. In such
system the RAM memory is often divided and accessible only locally.

Figure 3. File system used by the HADRON code for checkpointing and to facilitate
restart mechanism.

In contrast in grid environment not only RAM but also a disk memory is
distributed over two or more local systems. This itself is not a major drawback
since Broker is designed to replicate and gather all data for the user.

When computations, however, take a very long time to complete, the ap-
plication is usually equipped with some restart mechanism (see Fig. 3 which
presents the file system used by the CFD HADRON). This means (as de-
scribed in Section 2) that each processor stores to its own file, in regular



184 J. Rokicki, M. Krause, M. Wichulski

Figure 4. Regular (left) and restart (right) modes on system with common disk
memory.

intervals, a huge amount of data – the file name is often parameterized by the
process number (see Fig. 4). When the computations are terminated (either
by accident, or because of encountering error or by the action of the user)
these files are gathered by the Broker and transferred to a single location.

Figure 5. Regular (left) and restart (right) modes on system with distributed disk
memory (grid) – dashed lines describe incorrectly positioned files.

When the user decides to restart the computations the Broker should
perform the inverse operation. In order to operate correctly each new pro-
cess should have its own restart file available locally (the name of the file
should match the process number). This number however is neither available
in advance to the Broker, nor can be guessed by the application itself. As a
consequence the application will not work correctly in the restart mode (see
Fig. 5).

It is of course possible to add a mechanism to the application, which
recognizes existing files and re-numbers computing nodes. This however is
not very practical and should be solved in a different way.

Still other issues that remain open are related to the control of the running
application (e.g., inspection of output files as well as checkpointing).

References

[1] D. Drikakis, J. Majewski, J. Rokicki and J. Żó ltak. Investigation of blending-
function-based overlapping-grid technique for compressible flows. Computer

Methods in Applied Mechanics and Engineering, 190(39), 5173 – 5195, 2001.
[2] J. Rokicki, J. Żó ltak, D. Drikakis and J. Majewski. Parallel performance of over-

lapping mesh techniques for compressible flows. Future Generation Computer

Systems, 1(19), 3 – 15, 2001.


