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Abstract. The Dirichlet problem for a semilinear singularly perturbed parabolic
convection-diffusion equation is considered on the interval. For such a problem the
basic finite difference (nonlinear) scheme based on classical approximations on piece-

wise uniform meshes condensing in the layer, converges ε-uniformly at a rate which
does not exceed 1. Using the Richardson technique, we construct a scheme conver-
gent ε-uniformly at the rate O(N−2 ln2 N + N

−q
0 ), q ≥ 2, where N and N0 define

the number of nodes in the spatial and time meshes, respectively.
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1. Problem Formulation. Aim of the Research

On the set G
G = G

⋃

S, G = D × (0, T ], (1.1)

where D = (0, d), we consider the Dirichlet problem for the quasilinear singu-
larly perturbed parabolic convection-diffusion equation

L
(

u(x, t)
)

≡ L2 u(x, t) − f
(

x, t, u(x, t)
)

= 0, (x, t) ∈ G, (1.2)

u(x, t) = ϕ(x, t), (x, t) ∈ S.

Here

1 This research was supported by the Netherlands Research Organisation NWO
under grant No. 047.016.008 and by the Russian Foundation for Basic Research
under grants No. 04–01–00578, 04–01–89007–NWO a.
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L2 = ε a(x, t)
∂2

∂x2 + b(x, t)
∂

∂x
− c(x, t) − p(x, t)

∂

∂t
, (x, t) ∈ G,

the functions a(x, t), b(x, t), c(x, t), p(x, t), f(x, t, u) and ϕ(x, t) are assumed
to be sufficiently smooth on G, G × R and S respectively, moreover 2

a0 ≤ a(x, t) ≤ a0, b0 ≤ b(x, t) ≤ b0, |c(x, t)| ≤ c0, (1.3)

p0 ≤ p(x, t) ≤ p0, (x, t) ∈ G;

|f(x, t, u)| ≤ M, c1 ≤ c(x, t) +
∂

∂u
f(x, t, u) ≤ c1, (x, t, u) ∈ G × R;

|ϕ(x, t)| ≤ M, x ∈ S; a0, b0, c1, p0 > 0;

the perturbation parameter ε takes arbitrary values in (0, 1]. Assume that

the data of problem (1.1), (1.2) on the set of corner points S∗ = S0

⋂

S
L

satisfy the compatibility conditions which ensure the required smoothness of
the solution on G (see, e.g., [2]). Here S = S0

⋃

SL, S0 and SL are the lower
and lateral parts of the boundary; S0 = S0. For small values of ε, a regular
boundary layer appears in a neighbourhood of the set SL

1 = {(x, t) : x =
0, 0 < t ≤ T}. Here SL

1 and SL
2 are the left and right parts of the lateral

boundary; SL = SL
1

⋃

SL
2 .

Our aim is for the boundary value problem (1.1), (1.2), using the Richard-
son technique, to construct a finite difference scheme convergent ε-uniformly
with accuracy higher than 1.

2. Basic Finite Difference Scheme

First we present a ε-uniformly convergent finite difference scheme constructed
on the base of classical approximation of problem (1.1), (1.2).

On the set G we introduce the rectangular mesh

Gh = ω × ω0, (2.1)

where ω and ω0 are arbitrary, in general, nonuniform meshes on the segments
[0, d] and [0, T ] respectively. Let hi = xi+1 − xi, xi, xi+1 ∈ ω, h = maxi hi,
and hk

t = tk+1 − tk, tk, tk+1 ∈ ω0, ht = maxk hk
t . Assume that the condition

h ≤ M N−1, ht ≤ M N−1
0 be satisfied, where N +1 and N0+1 are the number

of nodes in the meshes ω and ω0 respectively.
We approximate problem (1.2), (1.1) by the finite difference scheme [4]

Λ (z(x, t)) ≡ Λ2 z(x, t) − f(x, t, z(x, t)) = 0, (x, t) ∈ Gh, (2.2)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here Gh = G
⋂

Gh, Sh = S
⋂

G,

2 Here and below M, Mi (or m) denote sufficiently large (small) positive constants
which do not depend on ε and on the discretization parameters.
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Λ2 ≡ ε a(x, t) δxbx + b(x, t) δx − c(x, t) − p(x, t) δ
t
, (x, t) ∈ Gh,

δxbx z(x, t) is the central difference derivative on the nonuniform mesh

δxbx z(x, t) = 2(hi + hi−1)−1[δx z(x, t) − δx z(x, t)], (x, t) = (xi, t) ∈ Gh,

δx z(x, t) and δx z(x, t) are the first order (forward and backward) finite dif-
ferences.

Now we construct the base scheme convergent ε-uniformly (see, e.g., [3, 6]).
On the set G we introduce the mesh

Gh = ω∗ × ω0, (2.3a)

where ω0 is a uniform mesh, ω∗ is a special piecewise uniform mesh which
is constructed as follows. The segment [0, d] is divided in two parts [0, σ],
[σ, d], step-sizes in these parts are constant and equal to h(1) = 2 σ N−1 and
h(2) = 2(d − σ)N−1 respectively. The parameter σ is defined by the relation

σ = σ(ε, N, l) = min
[

2−1 d, l m−1 ε ln N
]

, (2.3b)

where m is arbitrary number in (0, m0), m0 = min
G
[a−1(x, t) b(x, t)]. Here

l = 1. (2.3c)

For the other meshes this parameter will be chosen separately. The mesh ω∗

and mesh Gh = Gh(l = 1) are constructed.

For solutions of the difference scheme (2.2), (2.3) we obtain the following
ε-uniform estimate

|u(x, t) − z(x, t)| ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ Gh. (2.4)

Thus, the order of ε-uniform convergence does not exceed 1.

3. The Richardson Scheme

Now we give the Richardson method used to improve accuracy for solutions of
the proposed special basic scheme. This method was applied for improvement
of accuracy to linear singularly perturbed problems (see, e.g., [1, 5, 7] and
also the bibliography therein).

On the set G we construct meshes

G
i

h = ω ∗i × ωi

0, i = 1, 2, (3.1a)

uniform in t and piecewise uniform in x. Here G
2

h is Gh(2.3a), where

σ = σ(2.3b)(ε, N, l) for l = 2; (3.1b)

G
1

h is a coarsened mesh. For the parameters σi, which define piecewise uniform
meshes ω ∗i = ω ∗i(σi), we impose the condition σ1 = σ2, where σ2 = σ(3.1b),
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that is, segments on which the meshes ω∗1 and ω∗2 have a constant step-size,
are the same. Step-sizes in the mesh ω∗1 on the segments [0, σ], [σ, d] are k

times larger than step-sizes in the mesh ω∗2, and the step-size in the mesh ω1
0

(on the segment [0, T ]) are k times larger than the step-size in the mesh ω2
0

(k−1 N + 1 and k−1 N0 + 1 are the number of nodes in the meshes ω∗1 and
ω1

0 respectively). Let

G
0

h = G
1

h

⋂

G
2

h. (3.1c)

Let zi(x, t), (x, t) ∈ G
i

h, i = 1, 2 be solutions of the difference schemes3

Λ(2.2)

(

zi(x, t)
)

=0, (x, t) ∈ Gi

h, (3.2a)

zi(x, t)=ϕ(x, t), (x, t) ∈ Si

h, i = 1, 2. (3.2b)

Assume

z0(x, t) = γ z1(x, t) + (1 − γ) z2(x, t), (x, t) ∈ G
0

h, (3.2c)

where γ = γ(k) = −(k − 1)−1. We call the function z0
(3.2)(x, t), (x, t) ∈ G

0

h

the solution of the difference scheme (3.2), (3.1), i.e. the scheme based on the
Richardson method on two embedded meshes.

Taking into account a-priori estimates we obtain

|u(x, t) − z0(x, t)| ≤ M
[

N−2 ln2 N + N−2
0

]

, (x, t) ∈ G
0

h. (3.3)

Thus, the order of ε-uniform convergence is the second in t and the second
up to a logarithmic factor in x.

Theorem 1. Let for the data of the boundary value problem (1.2), (1.1) the

condition a, b, c, p ∈ C6+α(G), f ∈ C6+α(G × R), ϕ ∈ C6+α(S), α > 0, and

also condition (1.3) and the condition

ϕ(x, t) = 0, (x, t) ∈ S0,
∂k0

∂tk0

ϕ(x, t) = 0, (x, t) ∈ S∗,

∂k+k0+ku

∂xk ∂tk0 ∂uku

f(x, t, u) = 0, (x, t) ∈ S∗, u = 0, k, k0, ku ≤ 6,

be fulfilled, and let for u(x, t), that is the solution of the problem, and for its the

regular and singular components U(x, t) and V (x, t) the inclusion u, U, V ∈
C6(G) be satisfied. Then the solution of the difference scheme (3.2), (3.1)
converges to the solution of the boundary value problem ε-uniformly with the

rate O(N−2 ln2 N +N−2
0 ). For the discrete solution the estimate (3.3) is valid.

3 Throughout the paper, the notation L(j.k) (M(j.k), Gh(j.k)) means that these
operators (constants, grids) are introduced in formula (j.k).
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4. Linearized Basic Scheme

On mesh (2.1) we consider a difference scheme in which the nonlinear term
of the differential equation is computed using the sought function from the
previous time level. To the boundary value problem (1.1), (1.2) corresponds
the linearized difference scheme (see [4])

Λ(4.1) (z(x, t))≡Λ2
(2.2)z(x, t) − f (x, t, ž(x, t)) = 0, (x, t) ∈ Gh,

z(x, t)=ϕ(x, t), (x, t) ∈ Sh. (4.1)

Here ž(x, t) = z(x, t − ht), (x, t) ∈ Gh, t > 0.
Under the condition

∂

∂u
f(x, t, u) ≤ c(x, t), (x, t, u) ∈ G × R (4.2)

the difference scheme (4.1), (2.1) is monotone.

For simplicity we assume that the condition (4.2) is satisfied. Taking into
account estimates of the solution to problem (1.1), (1.2), for the linearized
difference scheme (4.1) on the special mesh (2.3) we obtain the ε-uniform
estimate (similar to estimate (2.4))

|u(x, t) − z(x, t)| ≤ M
[

N−1 ln N + N−1
0

]

, (x, t) ∈ Gh. (4.3)

If condition (4.2) is not satisfied, then in problem (4.1), (2.1) we pass from
the function z(x, t) to the function z∗(x, t), z(x, t) = z∗(x, t) exp(α t) and
choose the value α sufficiently large so that the following condition holds true

∂

∂u
f(x, t, u) ≤ c(x, t) + δt

[

exp(α t)
]

p(x, t), (x, t, u) ∈ G × R,

that ensures monotonicity of obtained discrete problem. Further we estab-
lish convergence of the function z∗(x, t) to the function u∗(x, t), u(x, t) =
u∗(x, t) exp(α t). Returning to the function z(x, t), we obtain ε-uniform esti-
mate (4.3).

5. Linearized Scheme of Improved Accuracy

In this section we present the Richardson scheme of higher accuracy, which
is constructed on the base of the linearized scheme (4.1), (2.3). Let zi(x, t),

(x, t) ∈ G
i

h, i = 1, 2 be solutions of the difference schemes

Λ(4.1)

(

zi(x, t)
)

=0, (x, t) ∈ G i

h, (5.1a)

zi(x, t) =ϕ(x, t), (x, t) ∈ Si

h, i = 1, 2,

where G
i

h = G
i

h(3.1). On the set G
0

h = G
0

h(3.1) we define the function
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z 0(x, t) = γ z 1(x, t) + (1 − γ) z 2(x, t), (x, t) ∈ G
0

h , (5.1b)

where γ = γ(3.2); z i(x, t), (x, t) ∈ G
i

h, i = 1, 2 are solutions of problem
(5.1), (3.1).

We call the function z 0
(5.1)(x, t), (x, t) ∈ G

0

h the solution of the linearized

difference scheme (5.1), (3.1), i.e. the Richardson method scheme based on
the linearized scheme (4.1), (2.3).

For the solution of problem (5.1), (3.1) we obtain the estimate (similar to
estimate (3.3))

|u(x, t) − z0(x, t)| ≤ M
[

N−2 ln2 N + N−2
0

]

, (x, t) ∈ G
0

h. (5.2)

Theorem 2. Let hypothesis of Theorem 1 be satisfied. Then the solution of the

linearized difference scheme (5.1), (3.1) converges to the solution of the bound-

ary value problem (1.2), (1.1) ε-uniformly at the rate O(N−2 ln2 N + N−2
0 ).

Remark 1. Usage of the Richardson method for larger number of embedded
meshes with respect to the variable t allows us to obtain schemes convergent
ε-uniformly with the rate O(N−2 ln2 N + N−k0

0 ), where k0 > 2 (see, e.g., [5]).
However, consideration of examples even in the case of linear problems shows
that increase of the number of embedded meshes with respect to the variable
x does not allow us to construct schemes convergent ε-uniformly with the
accuracy in x more than 2.

Authors would like to express their gratitude to Pieter W. Hemker for
interesting discussions of numerical methods with improved accuracy for sin-
gularly perturbed problems.
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