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Abstract. In the first quarter plane we consider the Dirichlet problem for a sin-
gularly perturbed elliptic equation with two perturbation parameters ε1 and ε2

multiplying the highest derivatives of the equation and one of the first derivative
respectively; ε = (ε1, ε2), ε1 ∈ (0, 1] and ε2 ∈ [−1, 1]. For small values of the param-
eters boundary layers arise which may be regular, parabolic, hyperbolic or elliptic.

We construct a formal difference scheme (on meshes with an infinite number

of nodes) and a constructive difference scheme (on meshes with a finite number

of nodes) which converge ε-uniformly, respectively, in the quarter-plane and on an
arbitrary chosen bounded subdomain.
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bounded domain, discrete approximation, ε-uniform convergence

1. Problem Formulation. Aim of the Research

In the quarter plane D, where D = D ∪ Γ ,

D = {x : xs ∈ (0,∞), s = 1, 2},

we consider the Dirichlet problem for the singularly perturbed equation and
boundary conditions2

L(1.1) u(x) = f(x), x ∈ D, u(x) = ϕ(x), x ∈ Γ. (1.1)

1 Research supported by the Netherlands Research Organisation NWO under grant
No. 047.016.008, by the Russian Foundation for Basic Research under grants
No. 04–01–00578, 04–01–89007–NWO a. and the Boole Centre for Research in
Informatics at the National University of Ireland, Cork

2 Throughout the paper, the notation L(j.k) (M(j.k), Gh(j.k)) means that this
operator (constant, grid) is introduced in formula (j.k).
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Here

L ≡ ε1

∑

s=1,2

as(x)
∂2

∂x2
s

+ b1(x)
∂

∂x1
+ ε2 b2(x)

∂

∂x2
− c(x),

the functions as(x), bs(x), c(x), f(x) are assumed to be sufficiently smooth on
D, s = 1, 2, the function ϕ(x) is sufficiently smooth on the sides Γj , j = 1, 2
and continuous on Γ ; Γ = Γ1 ∪ Γ2; Γs = Γ s, the side Γs is orthogonal to the
axis xs, s = 1, 2. We assume that the following conditions are satisfied: 3

a0 ≤ as(x) ≤ a0, b0 ≤ bs(x) ≤ b0, c0 ≤ c(x) ≤ c0,

a0, b0, c0 > 0, |f(x)| ≤ M, x ∈ D, |ϕ(x)| ≤ M, x ∈ Γ.

The parameters ε1 and ε2 are components of the vector-parameter ε; ε =
(ε1, ε2), ε1 ∈ (0, 1] and ε2 ∈ [−1, 1].

By the solution of the boundary value problem, we mean its classical solu-
tion, i.e., a function u ∈ C2(D)∩C(D) that is bounded on D and satisfies the
differential equation on D and the boundary condition on Γ . For simplicity,
we suppose that the compatibility conditions ensuring the required smooth-
ness of the solution for each fixed value of the vector-parameter ε are fulfilled
on the set Γ c = Γ1 ∩ Γ2 of “corner points”.

When the parameter ε1 tends to zero, boundary layers arise in a neigh-
bourhood of the boundary Γ (or its part). The nature of these layers and their
properties in a neighbourhood of the sets Γ1, Γ2, Γ c are determined by the
vector-parameter ε (see, e.g., [4]). A boundary layer arising in a neighbour-
hood of the boundary Γ2 depends on the relation between the parameters ε1

and ε2. This layer is regular (for ε
1/2
1 � ε2 ≤ 1), parabolic (for |ε2| = O(ε

1/2
1 ))

or hyperbolic (for ε2 < 0, ε
1/2
1 � |ε2| � 1), or no layer appears (for ε2 < 0,

|ε2| ≈ 1). In a neighbourhood of the set Γ1, but outside the nearest neigh-
bourhood of Γ c, the layer is regular (defined only by the parameter ε1), and
in a neighbourhood of the set Γ c the layer is elliptic (for ε1 = o(1) and ei-
ther ε2 ≥ 0 or ε2 < 0, |ε2| = o(1)), or the strong layer does not appear (for
ε1 = o(1), ε2 < 0, |ε2| ≈ 1).

Unlike problems in bounded domains (for singularly perturbed or regular
equations), the construction of numerical methods in the case of unbounded
domains is essentially complicated. The approximation of solutions of such
problems on the domain of definition, as rule, requires to use discrete sets
with an infinite number of mesh points. We refer to numerical methods on
meshes with an infinite and finite number of nodes as formal and constructive

methods, respectively. For problem (1.1), by using classical numerical approx-
imations (see, e.g., [1]), it is not difficult to construct a formal difference
scheme. It follows from Section 2 that a solution of this difference scheme on
sufficiently arbitrary meshes depends on the vector-parameter ε and converges
only under a very restrictive condition.

3 Here and below M, Mi (or mi) denote sufficiently large (or small) positive con-
stants independent of the vector-parameter ε and the parameters of difference
schemes.
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To develop constructive numerical methods in the case of problems in
unbounded domains it seems appropriate to use the following approach. Sup-
pose that we are interested in finding a solution of problem (1.1) on some

prescribed bounded set D
0
⊂ D. Let the set D

0
be a rectangle defined by its

lower-left and upper-right vertices d1 = (d1
1, d1

2) and d2 = (d2
1, d2

2), where d1

is an arbitrary point of D:

D
0

= D
0
(d1, d2), D

0
= D 0 ∪ Γ 0. (1.2)

Thus, we have D
0

= [d1
1, d2

1]×[d1
2, d2

2], d2 = d1+d 0, d 0 = (d 0
1 , d 0

2 ); generally
speaking, the value d 0

s , that is, the size of D0 along the xs-axis, may depend on
the parameter ε; let d 0

0 = max[d 0
1 , d 0

2 ]. It is required to construct a numerical
method that allows us to approximate the solution of problem (1.1) on the

set D
0
. The accuracy of the discrete solution on D

0
(just as the values d 0

s ,
s = 1, 2) can depend on the parameter ε and the values of N1 and N2, which
define the number of mesh points used (in x1 and x2) to solve the problem
numerically.

The aim of this research is to construct ε-uniformly convergent formal
and constructive schemes for the boundary value problem (1.1). In the case
of constructive difference schemes we are interested to find the solution of
problem (1.1) on the bounded set D

0

(1.2).

2. Formal Difference Schemes

In the case of problem (1.1) we consider formal difference schemes, viz.
schemes on meshes with an infinite number of nodes.

On the set D we introduce the grid

D
∗

h = ω∗

1 × ω∗

2, (2.1)

where ω∗

s is a mesh on xs ≥ 0 with arbitrarily distributed mesh points. Let
hi

s = xi+1
s − xi

s, xi
s, xi+1

s ∈ ω∗

s , hs = maxi hi
s, h = maxs hs. By N∗s + 1 we

denote the minimum number of nodes in ω∗

s on a unit interval, i.e., we call
N∗s the minimal mean (over the unit interval) density of mesh points in ω∗

s .
Suppose that the condition h ≤ MN−1

∗
is fulfilled, where N∗ = min[N∗1, N∗2].

To solve problem (1.1) we use the difference scheme [1]





Λz(x) = f(x), x ∈ D∗

h,

z(x) = ϕ(x), x ∈ Γ ∗

h .
(2.2)

Here D∗

h = D ∩ D
∗

h, Γ ∗

h = Γ ∩ D
∗

h;

Λz(x) ≡

{
ε1

∑

s=1,2

as(x)δxs cxs +b1(x)δx1 +ε+
2 b2(x)δx2 +ε−2 b2(x)δx2−c(x)

}
z(x);
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δxs cxsz(x) and δxsz(x), δxsz(x) are the second and first (forward and back-
ward) difference derivatives on non-uniform grids, for example:

δx1 cx1 z(x) = 2
(
hi−1

1 + hi
1

)−1 (
δx1 − δx1

)
z(x), x = (xi

1, x2) ∈ D∗

h,

ε+
2 = 2−1(ε2 + |ε2|), ε−2 = 2−1(ε2 − |ε2|).

Taking into account estimates similar to those in [4], in the case of a

uniform mesh D
∗

h = D
∗u

h we obtain the estimate

|u(x) − z(x)| ≤ M (ε1 + N−1
∗

)−1 N−1
∗

, x ∈ D
∗

h,

unimprovable with respect to N∗ and ε. The condition N−1
∗

= o(ε1), ε1 ∈ (0, 1]
where N−1

∗
is an effective stepsize, is necessary and sufficient for convergence

of solutions to difference scheme (2.2) on D
∗u

h as N∗ → ∞.

To construct ε-uniformly convergent schemes, we use meshes condensing
in a neighbourhood of the boundary layers. The rule of mesh refinement is
controlled by the nature of the arising boundary layers.

On the set D we introduce the mesh

D
∗

h = D
∗S

h = ω∗S
1 × ω∗S

2 , (2.3a)

where ω∗S
s = ω∗S

s (σs) is a piecewise uniform mesh on the semiaxis xs ≥ 0,
s = 1, 2. The stepsizes of the mesh ω∗S

s are constant on the intervals [0, σs] and

[σs,∞) and are equal to h
(1)
s = 2σsN

−1
∗s and h

(2)
s = 2(1−σs)N

−1
∗s , respectively.

The value σ1 is chosen to satisfy the condition

σ1 = σ1(ε1, N∗1) = min
[
2−1, M1 ε1 ln N∗1

]
, where M1 =

1

m1
. (2.3b)

The magnitude of σ2 depends on the values of ε1, ε2 and N∗2 so that
σ2 = σ2(ε1, ε2, N∗2):

σ2 =





min [2−1, M2 ε
1/2
1 ln N∗2] for |ε2| ≤ M0 ε

1/2
1 ,

min [2−1, M3 ε1 ε−1
2 ln N∗2] for ε2 > M0 ε

1/2
1 ,

min [2−1, M4 |ε2| ln N∗2] for ε2 < −M0 ε
1/2
1 ,

(2.3c)

where Mi =
(
mi

)−1
, i = 2, 3, 4. Here, by virtue of a-priori estimates (see, e.g.,

[4]) M0 ≥ 1 is an arbitrary number, mi is an arbitrary number in (0, mi0),
i = 1, . . . , 4. The constants mi0 are chosen as in [4]. The parameters ε1, ε2

define a width of arising boundary layers and, thus, the transition points
σ1, σ2.

When deriving a-priori estimates we assume that the following condition
holds:

as, bs, c, f ∈ Cl(D), s = 1, 2, ϕ ∈ C(Γ ), ϕ ∈ C l+α(Γj), (2.4)

j = 1, 2, l ≥ 3K − 4, K ≥ 3, α ∈ (0, 1).
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Applying the technique from [2] and taking into account a-priori estimates
for the solutions of problem (1.1), we find the ε-uniform error estimate

|u(x) − z(x)| ≤ M N−1
∗

ln N∗, x ∈ D
∗S

h . (2.5)

Theorem 1. Let the condition (2.4) be satisfied, where K = 3. Then the

solution of the difference scheme (2.2), (2.3) converges to the solution of the

boundary value problem (1.1) ε-uniformly with the estimate (2.5).

3. Constructive Difference Schemes

Suppose that it is required to develop a constructive scheme which approx-

imates the solution of problem (1.1) on the set D
0

(1.2). For the set D
0

we
construct the extended domain

D
[0]

(η) = D
[0](

D
0
; η

)
. (3.1)

Here D
[0]

(η) = Dη ∩ D, Dη is the η-neighbourhood of the set D(1.2),

Dη =
[
d1
1 − η, d2

1 + η
]
×

[
d1
2 − η, d2

2 + η
]
, di

j = di
j(1.2), i, j = 1, 2; η ≥ 1

is an arbitrary value. Let u[0](x), x ∈ D
[0]

, be the solution of the problem

Lu[0](x) = f(x), x ∈ D[0], (3.2)

u[0](x) = ϕ(x), x ∈ Γ [0] ∩ Γ, u[0](x) = 0, x ∈ Γ [0] \ Γ.

The functions u[0](x) on the set Γ [0] \Γ and u(x) differ by a finite magnitude.
For the solution of problem (3.2) (3.1) we obtain the following estimate:

|u(x) − u[0](x)| ≤ M β, x ∈ D
0
, (3.3)

where β = β(η) = exp(−m η), m = mini mi, mi = mi
(2.3), i = 1, . . . , 4.

For given β in the estimate (3.3), the set D
[0]

turns out to be bounded. The
condition η ≥ M0 ln β−1, M0 = m−1

(3.3) for sufficiently small β is sufficient for

the set D
[0]

to be the domain of ”essential“ dependence [3]. Thus, the domain
of ”essential“ dependence, that is the domain out of which finite disturbances
of the solution u(x) do not influence “essentially” on the solution u(x) on the

set D
0
, is ε-uniformly bounded.

To construct a constructive scheme, on the set D we introduce the set

D
∧

= D
[0]

(3.1)(η) =
[
d̂ 1
1 , d̂ 2

1

]
×

[
d̂ 1
2 , d̂ 2

2

]
, (3.4a)

where η = M0 ln β−1, and β > 0 is a sufficiently small number chosen below.

On the set D
∧

(3.4), we introduce the mesh with an arbitrary distribution of its
nodes:

Dh = D
∧

h = ω1 × ω2, (3.4b)
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Ns + 1 is the number of nodes in the mesh ωs, s = 1, 2; let N = min[N1, N2].
The condition hs ≤ M(d 0

s +η)N−1
s is assumed to be satisfied, where hs is the

maximal stepsize of the mesh ωs. On the mesh Dh, we consider the scheme




Λz(x) = f(x), x ∈ Dh,

z(x) = ϕ(x), x ∈ Γh ∩ Γ, z(x) = 0, x ∈ Γh \ Γ.
(3.5)

In order to complete the determination of the constructive difference
scheme we choose the parameter β satisfying the condition

β = N−1; (3.4c)

in this case η = M0 ln N . The constructive difference scheme (3.5), (3.4), i.e.,
the scheme with the finite number of mesh points, has been thus constructed.
For the solutions of the difference scheme (3.5) on the mesh Dh, uniform with
respect to both variables, ωs = ω u

s , s = 1, 2, we have

|u(x) − z(x)| ≤ M
(
ε1 + (d 0

0 + ln N)N−1
)−1

(d 0
0 + ln N)N−1, x ∈ D

0

h .

When constructing ε-uniformly convergent constructive schemes we will
use, as meshes ωs(3.4b), the following meshes

ω u
s , ω S

s , s = 1, 2, (3.6a)

depending on the value of the vector-parameter ε and on the mutual dis-

position of the set D
∧

(3.4) and the boundary Γ . In (3.6a) ω u
s is a uniform

mesh and ωS
s = ωS

s (σs) is a piecewise uniform mesh on the segment [d̂ 1
s , d̂ 2

s ],

d̂ 1
s = max[d1

s − η, 0], d̂ 2
s = d2

s + η, di
s = di

s(1.2), i, s = 1, 2; σs is a param-

eter depending on ε and Ns. The stepsizes of the mesh ωS
s are constant on

the segments [d̂ 1
s , σs] and [σs, d̂

2
s ] and equal to h

(1)
s = 2(σs − d̂ 1

s )N−1
s and

h
(2)
s = 2(d̂ 2

s − σs)N
−1
s , respectively. The values σ1 and σ2 are chosen to sat-

isfy the conditions σ1 = σ1(2.3)(ε1, N1), σ2 = σ2(2.3)(ε1, ε2, N2). The meshes
ωs from (3.4b) are defined by the relations

ωs =

{
ω u

s for D
∧

(3.4)

⋂
Γs = ∅,

ω S
s for D

∧

(3.4)

⋂
Γs 6= ∅; s = 1, 2.

(3.6b)

The difference scheme (3.5), (3.4), (3.6) for fixed values of d 0
s(1.2), converges

on D
0

ε-uniformly:

|u(x) − z(x)| ≤ M
∑

s=1,2

N−1
s (d 0

s + ln Ns), x ∈ D
0

h . (3.7)

In the case of the condition d 0
1 , d 0

2 = O(ln N) we have the ε-uniform estimate

|u(x) − z(x)| ≤ MN−1 ln N, x ∈ D
0

h . (3.8)
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Theorem 2. Let the condition of Theorem 1 be satisfied. Then the solution

of the difference scheme (3.5), (3.4), (3.6) converges on the set D
0

to the

solution of the boundary value problem (1.1) ε-uniformly with the estimates

(3.7) and (3.8).

Remark 1. Estimate (3.8) is similar to one in [4] for ε-uniformly convergent
scheme in the case of a problem in a bounded domain.
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