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Abstract. We consider 2D composite materials with doubly periodic cells and
randomly distributed inclusions in the representative cell. The wavelet techniques
is used in order to approximate the effective characteristics of such materials (e.g.
thermo- and electric-conductivity, effective permeability etc.) It is applied to the
functional equations arising.
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1. Introduction

Wavelet analysis becomes nowadays very important interdisciplinary subject
which unifies the results of Mathematical Analysis, Linear and Nonlinear Al-
gebra, Differential and Difference Equations, Numerical Analysis, Computer
Science etc. Among the applications we have to point out those to the study of
different properties of composite materials (see e.g. [3] and references therein).
The standard approach to the study of the effective properties of composite
materials with the periodic structure (i.e. the properties of the assembled
material as a whole) is the homogenization methods highly developed in the
recent two decades (see, e.g., [1, 5, 12]).

Usually the homogenization technique is used for materials with the rich
microstructure but it leads to the property that the composite material on the
consideration is (almost) of laminate type (see [11]). Recently a new model for
composite materials with a rich microstructure was proposed (see [2, 6, 7]).
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It is supposed that the material itself consists of doubly periodically situated
cells in which the inclusions are spread randomly in a sense randomly. For
such composites the effective characteristics are determined in the form of
the infinite series containing so called Eisenstein’s sums (see [10]). Since these
analytic representations are too compound we propose in this paper to use
a family of 2D (complex) wavelets in order to approximate the effective pa-
rameters of the above said composite materials. Due to periodic nature of the
global structure of the material we propose here a periodic variant of com-
pactly supported wavelets (as an analog of those one-dimensional periodic
wavelets discussed in [4]). We exploit here the ideas from [8] for construction
of the corresponding family of wavelets.

2. Effective Conductivity of Doubly Periodic Composite
Materials

Let us consider a lattice L which is defined by the two fundamental translation
vectors 1 and 2 (2> = —1) in the plane C = R? of the complex variable
z = x +1y. The fundamental cell Q) ) is the square

1 1
{z=t1 +ut2 €C: —§<tp<§,p:172}.

Let £:= |J {mi+wma} be the set of the lattice points, where my, msy € Z.
mi,m2
Let us denote the cells corresponding to the points of the lattice £ as

Q(mi,mz) = Qo,0) +m1 +1my :={z€C: z—my —wma € Qo,0)}-

Let us consider the situation when mutually disjoint equal disks (inclusions)
Dy :={z€C:|z—ax| <r}(k=1,2,..,N)arelocated inside of fundamental
cell Qo,0), and periodically repeated in all cells Q(,n, m,)- Let us denote by
Ty = {z € C: |z —ai| = r} the boundary of the corresponding inclusion

N
and consider the connected domain Dy := Qq,0) \ (U Dy U Tk) obtained by
k=1

removing of the inclusions from fundamental cell Q(OTO).
The problem is to define the effective conductivity of the doubly periodic

composite material with matrix Dper = (J ((Do U 0Q0,0)) + m1 + 1my2)
N 1,Mm2
and inclusions D;p. = U U (Dg + m1 + 1ma) occupied by materials of

myp,mz k=1
conductivities A = 1 and A; > 0, respectively. This problem is equivalent to
determination of the potential of corresponding field, i.e., of finding a func-
tion u(z) satisfying the Laplace equation in each component of the composite
material:

Au=0, z€ Dper U Dine, (2.1)

and conjugation conditions:
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ou™ ou~
) — _ _
u(t) = u (t), o (t) =\ o (t), te Te, k=1,2,...N, (2.2)

my,m2

0
where — is the outward normal derivative and

on
ut(t):= lim  U(z), u (t):= lim U(z), te€ U Tk, k=1,2,...,N.

z—t,2z€Dg z—t,2z€Dy,
my,ma2
We also impose the quasi periodicity conditions on u(z), i.e., u(z) has constant
jump in the direction of each fundamental translation vector:

uz+1)=u(z)+1, wulz+1)=u(2). (2.3)

Let us introduce the complex potentials ¢(z), ¢r(z) analytic in D,y and
Dy, respectively, and continuously differentiable in the closures of Dy and Dy.
The harmonic potential and complex analytic potentials ¢ and ¢ are related
by the equalities

R (o(z) + 2), z € Do,
u(z) = (2.4)
2o Ron(2), 2 € Dy, k=1,2,...N.

The real conditions (2.2) can be rewritten following in terms of the complex

potentials (see [6])

- 1— N
t) = pi(t) — ) —t, |t—agl = —
o(t) = pr(t) —p pi(t)—t, [t—ar| =7, p S

k=1,2,..,N. (2.5)

The problem (2.5) is a particular case of so called R-linear conjugation prob-
lem.

To determine the current Vu(z,y) we need to introduce another complex
potentials which are simply derivatives of the potentials (2.4):

_O0p  Ou  Ou
P(2) = = 9% Zay, z € Dy 0
0o _Mtl(Ou_ du '
Vi(2) == 9 2 (695 Z@y)’ z € Dy.

Differentiating (2.5) we arrive at the following problem

r

w(t)=¢k(t)+p<t )m—(t)—l, lt—ar| =7, k=1,2,...N. (2.7)

—an
In the above problem we have N contours 7) and N complex conjuga-
tion conditions on each contour T}, and we need to find N + 1 functions 1),
U1,¥2,...,¥N, i.e., we need one more condition to close up the system. It is
obtained by applying Liouville’s theorem for doubly periodic functions.
Let us consider the Banach space Cj of the functions continuous on T}
with the norm ||¢ ]| := max |k (t)] (k=1,2,...,N), and the closed subspaces
k
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C,j C Cy, of functions 1, which admit an analytic continuation into Dy,. Let us
introduce the Banach space C T consisting of the functions ¥(t) := ¢ (t) € C;
for all k = 1,2,..., N with the norm ||¥] := m]?XW)kH- We use further the

same notations for initial functions ¥, € C’,j , ¥ € O and their analytic
continuation.

By applying a variant of the analytic continuation method (cf., [6]) we
arrive at the following system of linear functional equations

(D) =05 5T Wonpmaitin) (2) 41, 9

k=1 mi,m>
|z —am| <rm, m=12,.., N,

with respect to 1, € C;l,, where

2 D)
r r
I-'[m m z)= a ?
( b Q’kwk)( ) (z—ak—ml—zml) d]k (t—ak—ml—zmg k)

and

N
Z Wml,mQ,k = Z Z Wml,mg,k + Z IWml,mg,m- (29)

k=1 mi,mo k#m mi,mz mi,msa

Operator Wy, m, k is a compact on C’,:r for each fixed my,mo € Z, k €
{1,..., N}. The functional equation (2.8) has a unique solution in C*. It can
be found by the method of successive approximations. The function v (z) has
then the form

N
P(z) = pz Z (Wi k) (2), 2z € Do UIDy. (2.10)
k=1 j
Hence an existence and uniqueness of the solution is shown.

In order to give more suitable representation of the unknown functions we

look for 9., (z) in the form of series in r?:

Yn(2) = P (2) + ) (2) + e (2) + (2.11)

where each term is expanded into the Taylor series

D) = e - an)
=0

The derivatives z/szf)(z) are defined [2] by following recursive relations:

PO (2) =1,
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. B
YD) =p | S U8 Ba(z — ar) + winon(z — am) (2.12)
_k;ém
Y
=p Z EQ(Z — CLk) + UQ(Z - am) )
_k;ém
(p+1) N o 0)
K = o] 3 v Breale - a) + Uinioniale — an)

5 D, By (e — k) + S0 0t (5 — am)
Kz PTLE p+1 k p=1mTpHl " (2.13)

+ ...

N ——

+ 5 O Balz — a) + U0z — am)]
k#m

where

E,.(z):= Z (z—mq —wmg)™ ™

mi1,m2

are so called Eisenstein’ functions (the integer numbers m;i, ms range from
—00 to +00 except m? +m3 = 0).

The formulas (2.12), (2.13) describe an algorithm for determination of the
current Vu (u is a solution of the initial problem) in term of the Eisenstein
functions, the contrast parameter p and the radius r of the disks. Note that
to determine the effective conductivity it is sufficient to know the current Vu.

3. Harmonic Wavelets on the Plane

Our next step is to approximate the Eisenstein’ function by using the com-
plex analytic wavelets. A suitable form for the construction of the latter was
proposed recently in [8]. We do not go here into the details and describe only
the principle step of the construction from [8]. All calculation will be done in
the forthcoming papers.

The family of wavelets proposed in [8] has the form

an(|2]) = 270=2/2 Z 0. (1277 cos(2mv(k +1/2)2777Y)|2|” cos v,

where n = 29 + k, 0 < k < 2/, and j is an integer number. Here 6.(w) are
"cap-type" functions, i.e. f.(w) =0forallw <1 —e,w > 1+¢, 0.(w) =1 for
al 1 —¢/2 < w < 1+4¢/2, and . (w) is smooth on the remaining intervals.
Such system is used to solve numerically the Dirichlet problem for the Laplace
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equation in an annulus. In order to apply it for calculation of the Eisenstein’
sums we have to make their periodization in two direction (cf., e.g. [4, 9]).
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