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1. Introduction

In many practical applications there arise integral equations of the form

u(x) =

1
∫

0

K(x, y)u(y)dy + f(x) , 0 ≤ x ≤ 1 , (1.1)

with f ∈ Cm[0, 1], K(x, y) = g(x, y)|x − y|−ν , g ∈ Cm([0, 1] × [0, 1]),
m ∈ N = {1, 2, . . .} and 0 < ν < 1 (by Ck(Ω) we denote the set of all
k times continuously differentiable functions on Ω, C0(Ω) = C(Ω)). Solu-
tions of this type equations are typically non-smooth at the endpoints of
the interval [0, 1] where their derivatives become unbounded, see, for exam-
ple, [1, 6, 7]. In collocation and Galerkin methods the singular behaviour of
the exact solution can be taken into account by using special graded grids
∆r

N = {x0, . . . , x2N : 0 = x0 < . . . < x2N = 1} with the nodes

1 This work was supported by the Estonian Science Foundation (Research Grant
No. 5859)
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xi =
1

2

(

i

N

)r

, i = 0, 1, . . . , N ; xN+i = 1 − xN−i, i = 1, . . . , N , (1.2)

where N ∈ N and r ∈ [1,∞). By using a collocation (or Galerkin) method
based on piecewise polynomials of degree at most m − 1, one can reach a
convergence of order O(N−m) for sufficiently large values of r, see [1, 6, 7].

However, in practice, the computations on strongly graded grids ∆r
N for

large values of r may be numerically instable since the grid points (1.2) will be
located too close one another near the endpoints of [0, 1] and final system of
algebraic equations which one has to solve may become rapidly ill-conditioned
as N is increased, see [2].

To avoid problems associated with the use of strongly graded grids and
still maintain the optimal convergence order, the following approach for the
numerical solution of (1.1) can be used. First we regularize the solution to (1.1)
by introducing a suitable new independent variable so that the singularities
of the derivatives of the solution will be milder or disappear at all. After that
we solve the transformed equation by a piecewise collocation (or Galerkin)
method on a mildly graded or uniform grid. We refer to [3] for details, compare
also [2, 4].

In this contribution we extend the domain of applicability of this technique.
To this aim, we examine a more complicated situation for equation (1.1)
where the kernel K(x, y), in addition to a diagonal singularity (a singularity
as y → x), may have different boundary singularities (singularities as y → 0
and y → 1). Actually, we assume that the kernel K has the form

K(x, y) = g(x, y)|x − y|−νy−λ(1 − y)−µ, (1.3)

where
g ∈ Cm([0, 1] × [0, 1]) , m ∈ N ; ν, λ, µ ∈ (−∞, 1) . (1.4)

The set of kernels satisfying {(1.3),(1.4)} will be denoted by W m,ν,λ,µ. A
more general equation with kernels containing diagonal and boundary singu-
larities will be considered in a forthcoming paper.

2. Smoothing Transformation

For given m ∈ N and α, β ∈ (0, 1), let Cm,α,β(0, 1) be the set of all functions
u ∈ Cm(0, 1) such that

∣

∣u(j)(x)
∣

∣ ≤ cu

[

x1−α−j + (1 − x)1−β−j
]

, 0 < x < 1, j = 1, . . . , m , (2.1)

where cu is a positive constant. It follows from (2.1) with j = 1 that u ∈
Cm,α,β(0, 1) has a continuous extension to [0, 1]. The regularity of a solution
to (1.1) can be characterized by the following lemma.

Lemma 1. [5] Let K ∈ W m,ν,λ,µ, f ∈ Cm,ν+λ,ν+µ(0, 1), m ∈ N, 0 < ν < 1,
0 ≤ λ < 1, ν + λ < 1, 0 ≤ µ < 1, ν + µ < 1. Assume also that equation (1.1)
has a solution u ∈ C[0, 1]. Then u ∈ Cm,ν+λ,ν+µ(0, 1).
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For d ∈ N denote (cf. [3])

ϕ(s) =

{

2d−1sd, if 0 ≤ s ≤ 1/2 ,
1 − 2d−1(1 − s)d, if 1/2 ≤ s ≤ 1 .

(2.2)

Clearly, ϕ ∈ C1[0, 1] and ϕ′(s) > 0 for 0 < s < 1. Thus, ϕ maps [0, 1] onto
[0, 1] and has a continuous inverse ϕ−1 with ϕ−1(0) = 0 and ϕ−1(1) = 1.

In the sequel, c denotes a generic constant.

Lemma 2. Let uϕ(s) = u(ϕ(s)), s ∈ [0, 1], where u ∈ Cm,α,β(0, 1), m ∈ N,
0 < α < 1, 0 < β < 1. Then uϕ ∈ C[0, 1], uϕ

∣

∣

(0, 1

2
]
∈ Cm(0, 1

2 ], uϕ

∣

∣

[ 1
2
,1)

∈

Cm[ 12 , 1) and

∣

∣u(j)
ϕ (s)

∣

∣ ≤ c

{

1 , if j ≤ d(1 − γ) ,

sd(1−γ)−j + (1 − s)d(1−γ)−j , if j > d(1 − γ) ,
(2.3)

where 0 < s < 1, γ = max{α, β} and j = 1, . . . , m.

Proof. The smoothness claim is clear. Further, for the derivatives of the
composite function uϕ = u ◦ ϕ, we have the Faà di Bruno’s representation

u(j)
ϕ (s) =

∑ j!

n1! . . . nj !
u(n)(ϕ(s))

(

ϕ′(s)

1!

)n1

. . .

(

ϕ(j)(s)

j!

)nj

, (2.4)

where n = n1 + . . .+nj and the sum is taken over all n1, . . . , nj ∈ {0}∪N for
which n1 + 2n2 + . . . + jnj = j, j = 1, . . . , m. Since ϕ(j)(s) ≡ 0 for j > d it is
sufficient to consider only the case 1 ≤ j ≤ min{d, m}.

Let us estimate all terms in (2.4) for 0 < s < 1. For 0 < s ≤ 1/2 we get
from (2.1) and (2.2) that

∣

∣u(n)(ϕ(s))
∣

∣ϕ′(s)n1 · · ·ϕ(j)(s)nj ≤ csd(1−α−n)+(d−1)n1+...+(d−j)nj

≤ c

{

1 for j ≤ d(1 − α) ,

sd(1−α)−j for j > d(1 − α) .
(2.5)

In a similar way we obtain for 1/2 ≤ s < 1 that

∣

∣u(n)(ϕ(s))
∣

∣ϕ′(s)n1 · · ·ϕ(j)(s)nj ≤c

{

1 for j ≤ d(1 − β) ,
(1 − s)d(1−β)−j for j > d(1 − β) .

(2.6)

Estimate (2.3) follows from (2.4)–(2.6). �

3. Numerical Solution and Convergence Estimates

Using (2.2) we introduce in (1.1) the change of variables y = ϕ(s), x = ϕ(t),
s, t = [0, 1]. We obtain an integral equation in the form

uϕ(t) =

1
∫

0

Kϕ(t, s)uϕ(s)ds + fϕ(t) , 0 ≤ t ≤ 1 , (3.1)
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where fϕ(t) = f(ϕ(t)) and Kϕ(t, s) = K(ϕ(t), ϕ(s))ϕ′(s) are given functions
and uϕ(t) = u(ϕ(t)) is a function which we have to find.

For given integers m, N ∈ N let

S
(−1)
m−1(∆

r
N ) =

{

v : v
∣

∣

[xj−1,xj ]
∈ πm−1, j = 1, . . . , 2N

}

,

S
(0)
m−1(∆

r
N ) =

{

v ∈ C[0, 1] : v
∣

∣

[xj−1,xj ]
∈ πm−1, j = 1, . . . , 2N

}

be two underlying spline spaces of piecewise polynomial functions on the grid
∆r

N (see (1.2)). Here v
∣

∣

[xj−1,xj ]
(j = 1, . . . , 2N) is the restriction of v(t),

t ∈ [0, 1], to the subinterval [xj−1, xj ] ⊂ [0, 1] and πm−1 denotes the set
of polynomials of degree not exceeding m − 1. Note that the elements of

S
(−1)
m−1(∆

r
N ) may have jump discontinuities at the interior points x1, . . . , x2N−1

of the grid ∆r
N . In every subinterval [xj−1, xj ] (j = 1, . . . , 2N) we introduce

m ∈ N interpolation points

xjl = xj−1 + ηl(xj − xj−1) , l = 1, . . . , m; j = 1, . . . , 2N , (3.2)

where η1, . . . , ηm are some fixed parameters which do not depend on j and N
and satisfy the conditions 0 ≤ η1 < . . . < ηm ≤ 1.

We find an approximation v to uϕ, the solution of equation (3.1) (un-
der conditions of Theorems 1 and 2 below the equations (1.1) and (3.1) are
uniquely solvable), using standard collocation and Galerkin methods. In the
first case we find v = vN,m,r,ϕ from the following conditions:

v ∈ S
(−1)
m−1(∆

r
N ) , N, m ∈ N, r ≥ 1 , (3.3)

v(xjl) =

1
∫

0

Kϕ(xjl, s)v(s)ds + fϕ(xjl), l = 1, . . . , m; j = 1, . . . , 2N , (3.4)

with xjl, l = 1, . . . , m; j = 1, . . . , 2N , given by the formula (3.2). In the second
case we determine v = vN,m,r,ϕ from the conditions (3.3) and

(v − Tϕv − fϕ, w) = 0 ∀ w ∈ S
(−1)
m−1(∆

r
N ) , (3.5)

where Tϕ is defined by the formula

(Tϕz)(t) =

∫ 1

0

Kϕ(t, s)z(s)ds , 0 ≤ t ≤ 1 ,

and (·, ·) denotes the standard inner product for L2(0, 1).
Having determined the approximation v for uϕ, we determine an approx-

imation uN = uN,m,r,ϕ for u, the solution of equation (1.1), setting

uN (x) = v(ϕ−1(x)) , 0 ≤ x ≤ 1 . (3.6)

Remark 1. The choice of nodes (3.2) with η1 = 0, ηm = 1 in (3.4) actually
implies that the resulting collocation approximation v belongs to the smoother

spline space S
(0)
m−1(∆

r
N ) than it is stated by the condition (3.3).
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Remark 2. The settings {(3.3),(3.4)} and {(3.3),(3.5)} form a system of linear
algebraic equations whose exact form is determined by the choice of a basis

in S
(−1)
m−1(∆

r
N ). We refer to [3, 4] for a convenient choice of it.

Theorem 1. Let the following conditions be fulfilled:
1) K ∈ W m,ν,λ,µ, f ∈ Cm,ν+λ,ν+µ(0, 1), 0 < ν < 1, 0 ≤ λ < 1, ν + λ < 1,

0 ≤ µ < 1, ν + µ < 1;

2) equation u(x) =
∫ 1

0
K(x, y)u(y)dy has only the trivial solution u = 0;

3) the interpolation nodes (3.2) with grid points (1.2) are used.
Then equation (1.1) has a unique solution u ∈ C[0, 1]. Moreover, for all

sufficiently large N ∈ N, say N ≥ N0, the settings {(3.3),(3.4),(3.6)} deter-
mine a unique approximation uN to u and

sup
0≤x≤1

|uN(x) − u(x)| ≤ c

{

N−rd(1−ν−γ), if 1 ≤ r < m
d(1−ν−γ) ,

N−m, if r ≥ m
d(1−ν−γ) , r ≥ 1 ,

(3.7)

where N ≥ N0, γ = max{λ, µ} and c is a positive constant which is indepen-
dent of N .

Proof. We outline the basic ideas on which the proof will be based. The
details will be given in a forthcoming paper where a more general situation is
considered, compare also [3, 4]. Due to the assumptions 1) and 2), equation
(1.1) has a unique solution u ∈ C[0, 1]. Further, we write equation (3.1) in
the form uϕ = Tϕuϕ +fϕ and show that it is uniquely solvable in L∞(0, 1). It
follows from (1.3), (1.4) and (2.2) that Kϕ(t, s) is continuous for t, s ∈ (0, 1),
t 6= s and

∣

∣Kϕ(t, s)
∣

∣ ≤ c|t − s|−νs−λ(1 − s)−µ.

Since ν + λ < 1 and ν + µ < 1, Tϕ is compact as an operator from L∞(0, 1)
into C[0, 1], see [5]. Therefore also uϕ ∈ C[0, 1]. On the basis of Lemmas 1
and 2 we find that for j = 1, . . . , m,

∣

∣u(j)
ϕ (s)

∣

∣ ≤ c

{

1 , if j ≤ d(1 − ν − γ) ,

sd(1−ν−γ)−j + (1 − s)d(1−ν−γ)−j , if j > d(1 − ν − γ) ,
(3.8)

where 0 < s < 1 and γ = max{λ, µ}. Further, conditions (3.3), (3.4) have the
operator equation representation

v = PNTϕv + PNfϕ , (3.9)

where PN is an operator which assigns to every function z ∈ C[0, 1] its piece-

wise interpolation function PNz ∈ S
(−1)
m−1(∆

r
N ) interpolating z at the points

(3.2). Using a quite standard arguing (cf. [3, 4, 6]), we obtain that equation

(3.9) has a unique solution v ∈ S
(−1)
m−1(∆

r
N ) and

∥

∥v − uϕ

∥

∥

L∞(0,1)
≤ c

∥

∥PNuϕ − uϕ

∥

∥

L∞(0,1)
, N ≥ N0 , (3.10)

where uϕ is the solution of equation (3.1). Due to (3.8) we get for N ≥ N0

that (cf. [6])
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∥

∥PNuϕ − uϕ

∥

∥

L∞(0,1)
≤ c

{

N−rd(1−ν−γ), if 1 ≤ r < m
d(1−ν−γ) ,

N−m, if r ≥ m
d(1−ν−γ) , r ≥ 1 .

(3.11)

On the basis of (2.2) and (3.6) we have

sup
0≤x≤1

∣

∣uN (x) − u(x)
∣

∣ = sup
0≤t≤1

∣

∣v(t) − uϕ(t)
∣

∣ .

This together with (3.10) and (3.11) yields the estimate (3.7). �

Theorem 2. Let the conditions 1)–2) of Theorem 1 be fulfilled. Then, for
all sufficiently large N ∈ N, say N ≥ N0, the settings {(3.3),(3.5),(3.6)}
determine a unique approximation uN to u, the solution of equation (1.1).
Moreover, for uN − u the estimate (3.7) holds.

We omit the proof since it is completely analogous to that of Theorem 4.2
in [3].

Remark 3. Theorems 1 and 2 suggest that the accuracy ‖uN − u‖∞ ≤ cN−m

can be achieved on a mildly graded or uniform grid. As an example, if we
assume that ν = 1/6, λ = 1/7, µ = 1/8, m = 2 (the case of linear polynomials)
and d = 3, then the maximal convergence order ‖uN−u‖∞ ≤ cN−2 is available
for r ≥ 1. In particular, the uniform grid with nodes (1.2), r = 1, may be used.

Remark 4. Instead of (2.2) a transformation ϕ can be introduced which takes
into account different singularity orders in (2.3) as s → 0 and s → 1 if α 6= β.
Respectively, the conditions on the parameter r will be different for [0, 1/2]
and [1/2, 1].
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