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Abstract. A class of singularly perturbed convection-diffusion problems is con-
sidered which contain a mixed derivative term. We consider the case when only
regular layers appear in the solutions of problems from this transformed problem
class. Under appropriate assumptions on the data of the problem we construct a
decomposition of the solution into regular and layer components. We then introduce
a numerical method on a piece-wise uniform fitted mesh that will generate approxi-
mations to solutions from the transformed problem class. We then show that in the
perturbed case (i.e. when the perturbation parameter is small relative to the inverse
of the number of mesh points) the approximations generated by the method converge
uniformly with respect to the singular perturbation parameter. Finally numerical
examples are presented that validate the theoretical result.

1. The Continuous Problem

Consider the following class of singularly perturbed elliptic convection-diffusion
problems, posed on the unit square Ω = (0, 1) × (0, 1):

Lεu(x, y) ≡ (ε(auxx + 2buxy + cuyy) + a · ∇u)(x, y) = f(x, y) in Ω, (1.1a)

u(x, y) = 0 on ∂Ω, (1.1b)

a(x, y) = (a1(x, y), a2(x, y)) > (α1, α2) > (0, 0), ∀(x, y) ∈ Ω, (1.1c)

1 This research was supported in part by the National Centre for Plasma Science
and Technology Ireland and by the Russian Foundation for Basic Research under
grant No. 04–01–00578.
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and the coefficients a, b and c satisfy the following ellipticity conditions:
For all (r, s) ∈ R

2

C1(r
2 + s2) ≤ (ar2 + 2brs + cs2)(x, y) ≤ C2(r

2 + s2), (x, y) ∈ Ω, (1.1d)

where C1, C2 > 0 are positive constants.
The operator Lε in (1.1a) satisfies the following minimum principle.

Lemma 1 [Minimum Principle]. Let v ∈ C2(Ω). If

v(x, y) ≥ 0, ∀(x, y) ∈ ∂Ω, and Lεv(x, y) ≤ 0, ∀(x, y) ∈ Ω,

then v(x, y) ≥ 0, ∀(x, y) ∈ Ω.

An immediate consequence of this is the following bound on the solution
of problems from Problem Class 1.1.

‖u‖ ≤
1

α
‖f‖ , where α = max{α1, α2}

and ‖·‖ is the global maximum norm.
We now state some assumptions regarding the smoothness of the solutions

of problems from Problem Class 1.1.

Assumption 1 Assume that the functions a, b, c, a1 and a2 are smooth.

Let f ∈ C1,ν(Ω) for some ν ∈ (0, 1). Assume that f satisfies the compatibility

conditions

f(0, 0) = f(1, 0) = f(0, 1) = f(1, 1) = 0. (1.2)

Also, assume f is sufficiently regular and that the data of the problem satisfy

additional compatibility conditions so that u ∈ C3,ν(Ω) for some ν ∈ (0, 1).

Remark 1. With the previous assumption we are ruling out the existence of
any corner singularities in the solutions of our problems. The local conditions
(1.2) are sufficient in the case when b ≡ 0 (see [1].) Unfortunately for the Prob-
lem Class 1.1 it seems that such local conditions cannot be derived. This ne-
cessitates the introduction of this assumption as we require that u ∈ C3,ν(Ω)
in our analysis.

We now give some classical bounds on the derivatives of problems from
Problem Class 1.1.

Theorem 1. Assume that a, b, c, a1, a2, f ∈ C1,ν(Ω) for some ν ∈ (0, 1).
Let u ∈ C3,ν(Ω) be the solution of a problem from Problem Class 1.1. Then

if ‖f‖ν ≤ Cε−1 we have

|u|k ≤ Cε−k, for k = 0, 1, 2, 3.
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2. Decomposition of Solution

The bounds on derivatives given in the previous section are not adequate for
the analysis of our numerical method. In this section we establish sharper
bounds on the derivatives by constructing a decomposition of the solution
into regular and singular components. This is given by

u(x, y) = v(x, y) + w(x, y), (x, y) ∈ Ω. (2.1)

The regular component v is constructed via the consideration of a problem
similar to that satisfied by u, but defined on an appropriate “extended” do-
main. Denote the solution of this problem by v?. Under suitable assumptions
on the data of this problem we can show the following.

Theorem 2. Let Ω? = (−d, 1) × (−d, 1), where d > 0. Then v∗ ∈ C3,ν(Ω
∗
)

and

|v∗|k ≤ C(1 + ε2−k) for k = 0, . . . , 3.

We then define v as v = v∗|Ω , and the singular component thus satisfies the
following homogeneous problem

Lεw(x, y) = 0 in Ω, w(x, y) = 0 on ∂ΩI , (2.2a)

w(x, y) = −v(x, y) on ∂ΩO, (2.2b)

where

ΩI = {(x, 1) | 0 ≤ x ≤ 1} ∪ {(1, y) | 0 ≤ y ≤ 1}

ΩO = {(x, 0) | 0 ≤ x ≤ 1} ∪ {(0, y) | 0 ≤ y ≤ 1}.

We now give the required sharper bounds on the derivatives of w. Introduce
the functions

A1(x, y) =
a1(x, y)

a(x, y)
, A2(x, y) =

a2(x, y)

c(x, y)
.

Theorem 3. Let w be the solution of (2.2). Then w can be decomposed into

the following sum

w(x, y) = wL(x, y) + wB(x, y) + wC(x, y), (x, y) ∈ Ω, (2.3)

where, for all (x, y) ∈ Ω we have the following bounds

|wL(x, y)| ≤ Ce−γ1x/2ε, |wB(x, y)| ≤ Ce−γ2y/2ε, |wC(x, y)| ≤ Ce−(γ1x+γ2y)/2ε,

and for all i, j, 1 ≤ i + j ≤ 3 we have
∣

∣

∣

∣

∂i+jwL

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ Cε−i(e−A1(0,y)x/ε + ε1−j),

∣

∣

∣

∣

∂i+jwB

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ Cε−j(e−A2(x,0)y/ε + ε1−i),

∣

∣

∣

∣

∂i+jwC

∂xi∂yj
(x, y)

∣

∣

∣

∣

≤ Cε−(i+j),

where

γ1 = min
(x,y)∈Ω

{

a1(x, y)

a(x, y)

}

, γ2 = min
(x,y)∈Ω

{

a2(x, y)

c(x, y)

}

. (2.4)
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Remark 2. The key feature of the bounds on the derivatives of the layer com-
ponents wL and wB , is that the magnitudes of the derivatives in the directions
normal to the layers, have an extra positive power of ε.

3. Numerical Method

Our numerical method comprises an upwind finite difference operator on a
fitted piecewise-uniform mesh. The difference operator LN

ε , on a mesh ΩN , is
defined for any mesh function ZN , as

LN
ε ZN

i,j ≡
(

ε(aδ2
x+2(b̃+δ+

xy+b̃−δ−xy)+cδ2
y)+a1D

+
x +a2D

+
y

)

ZN
i,j , ∀(xi, yj) ∈ ΩN ,

where

b̃±(xi, yj) =

{

0.5(b(xi, yj) ± |b(xi, yj)|), i < Nx/2, j < Ny/2,
0, otherwise,

,

δ+
xyZ

N
i,j =

D+
x D+

y + D−
x D−

y

2
ZN

i,j , δ−xyZN
i,j =

D+
x D−

y + D−
x D+

y

2
ZN

i,j .

The operator LN
ε is an inconsistent difference operator which only approxi-

mates the mixed derivative term in a subset of the mesh at which it is defined.
We discretise the domain Ω with the tensor product mesh Ω

N

σ = Ω
Nx

σ1
×Ω

Ny

σ2
,

where

Ω
Nx

σ1
= {xi | 0 ≤ i ≤ Nx} , and Ω

Ny

σ2
= {yj | 0 ≤ j ≤ Ny} ,

with

xi =

{

2iσ1/Nx, 0 ≤ i ≤ Nx/2
σ1 + 2(i − Nx/2)(1 − σ1)/Nx, Nx/2 < i ≤ Nx

,

yj =

{

2jσ2/Ny, 0 ≤ j ≤ Ny/2
σ2 + 2(j − Ny/2)(1 − σ2)/Ny, Ny/2 < j ≤ Ny

,

and

σ1 = min

{

1

2
,

ε

γ1
ln(NxNy)

}

, σ2 = min

{

1

2
,

ε

γ2
ln(NxNy)

}

. (3.1)

Setting ∂ΩN
σ = Ω

N

σ ∩∂Ω, the resulting fitted mesh finite difference method is







LN
ε UN (xi, yj) = f(xi, yj) in ΩN

σ ,

UN (xi, yj) = 0 on ∂ΩN
σ .

(3.2)

The finite difference operator LN
ε satisfies the following discrete minimum

principle on Ω
N

σ .
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Theorem 4 [Discrete Minimum Principle]. Let ZN be any mesh function

defined on Ω
N

σ . If

ZN (xi, yj) ≥ 0, ∀(xi, yj) ∈ ∂ΩN
σ , LN

ε ZN (xi, yj) ≤ 0, ∀(xi, yj) ∈ ΩN
σ ,

and Nx, Ny satisfy the inequalities

|bi,j |

ci,j
≤

σ1Ny

σ2Nx
≤

ai,j

|bi,j |
, ∀i, j such that 0 < i < Nx/2, 0 < j < Ny/2,

then ZN(xi, yj) ≥ 0, ∀(xi, yj) ∈ Ω
N

σ .

The following lemma gives a bound on the local truncation error of method
(3.2).

Lemma 2 [Truncation Error]. Let u be the solution of (1.1) and UN be

the solution of the discrete problem (3.2) defined on Ω
N

σ . Then the following

gives a bound on the local truncation error in the corner mesh region

∣

∣LN
ε (UN − u)(xi, yj)

∣

∣ ≤ C

[

ε

(

h

(
∥

∥

∥

∥

∂3u

∂x3

∥

∥

∥

∥

+

∥

∥

∥

∥

∂3u

∂x2∂y

∥

∥

∥

∥

)

+ k

(∥

∥

∥

∥

∂3u

∂y3

∥

∥

∥

∥

+

∥

∥

∥

∥

∂3u

∂x∂y2

∥

∥

∥

∥

))

+ h

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

+ k

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

]

.

And the following expression gives a bound for the local truncation error in

the remainder of the mesh

∣

∣LN
ε (UN − u)(xi, yj)

∣

∣ ≤ C

[

ε

(

(xi+1 − xi−1)

∥

∥

∥

∥

∂3u

∂x3

∥

∥

∥

∥

+ (yj+1 − yj−1)

∥

∥

∥

∥

∂3u

∂y3

∥

∥

∥

∥

+ ‖b‖

∥

∥

∥

∥

∂2u

∂x∂y

∥

∥

∥

∥

)

+ (xi+1 − xi)

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

+ (yj+1 − yj)

∥

∥

∥

∥

∂2u

∂y2

∥

∥

∥

∥

]

.

4. Decomposition of Numerical Solution and Error

Estimates

In an analogous manner to the continuous case we decompose our numerical
solution into a regular and singular component

UN(xi, yj) = V N (xi, yj) + W N (xi, yj), (xi, yj) ∈ Ω
N

σ ,

where V N is the solution of the inhomogeneous problem

{

LN
ε V N (xi, yj) = f(xi, yj) in ΩN

σ ,

V N (xi, yj) = v(xi, yj) on ∂ΩN
σ ,

(4.1)

and therefore W N is the solution of the problem
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{

LN
ε W N (xi, yj) = 0 in ΩN

σ ,

W N(xi, yj) = w(xi, yj) on ∂ΩN
σ .

(4.2)

The error in our numerical solution can now also be decomposed

(UN − u)(xi, yj) = ((V N − v) + (W N − w))(xi , yj), (xi, yj) ∈ Ω
N

σ ,

and the error in the regular component and the singular component can be
estimated separately.

Assumption 2 For convenience we set Nx = Ny = N and assume that the

hypotheses of Theorem 4 hold. We shall also assume that ε ≤ N−1.

As a consequence of this assumption we have the following

σ1 = 2
ε

γ1
ln N, σ2 = 2

ε

γ2
ln N. (4.3)

Theorem 5 [Error in the Regular Component]. Under Assumption 2 the

error in the smooth component satisfies the following ε-uniform error estimate

∣

∣(V N − v)(xi, yj)
∣

∣ ≤ CN−1, (xi, yj) ∈ Ω
N

σ .

Theorem 6 [Error in Singular Component]. Under Assumption 2 the er-

ror in the singular component satisfies the following ε-uniform error estimate

∣

∣(W N − w)(xi , yj)
∣

∣ ≤ CN−1(ln N)2, (xi, yj) ∈ Ω
N

σ .

5. Numerical Results

To examine the performance of the method we let Nx = Ny = N and tabulate
the computed ε-uniform orders of convergence, pN . These are calculated from
the two-mesh differences defined as

DN
ε = max

0≤i,j≤N
|UN (xi, yj) − U

2N
(xi, yj)|, DN = max

ε=2−9,...,2−32

DN
ε ,

where U
2N

indicates the piecewise bilinear interpolant of the numerical solu-

tion UN . The pN are then defined as pN = log2

DN

D2N
.

Consider the following class of problems where m, α1 and α2 are constants
and f is chosen so that conditions (1.2) are satisfied:

{

(ε((1 + m2)uxx+2muxy+uyy)+α1ux+α2uy)(x, y)=f(x, y) in Ω,

u(x, y) = 0 on ∂Ω.
(5.1)

We also define α1 and α2 so that the inequalities in Theorem 4 are satisfied.

For a range of values of m the ε-uniform orders of convergence are shown
in Table 1 which indicates that our method performs uniformly well for all
values of m considered.
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Number of Intervals N

m 8 16 32 64 128

−3.00 0.86 0.80 0.76 0.83 0.84
−2.00 0.70 0.75 0.74 0.80 0.84
−1.00 0.53 0.63 0.67 0.73 0.79
0.00 0.53 0.64 0.68 0.74 0.80
1.00 0.70 0.75 0.74 0.80 0.84
2.00 0.83 0.76 0.76 0.82 0.84
3.00 0.87 0.81 0.77 0.83 0.83

Table 1. Values of pN , for method (3.2) applied to Problem Class 5.1.
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