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Abstract. Hyperbolic weakly nonlinear system with periodical initial conditions
is considered in the article. The unperturbated system describes non interacted
travelling waves. Perturbated system describes some interaction of the waves, which
can be complicated by resonances. The asymptotic solution of the problem can be
finds as a solution of system, averaging along characteristics. The characteristics of
system depend from slowly time and the problem of asymptotic substantiation is
more difficult compare with constant characteristics case. This substantiation was
makes in early work of the author for one class of solutions. In this article other
class of solutions is considered and the other technics (method of stationary phase)
is used to substantiate the asymptotic.
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1. Statment of Problem

We consider a hyperbolic system of weakly nonlinear differential equations
with a small positive parameter ε:

∂uj

∂t
+ λj(εt)

∂uj

∂x
= εfj(u1, . . . , un) (1.1)

and with periodic initial contitions:

uj(0, x) = u0j(x) ≡ u0j(x + 2π). (1.2)

In [6] the method of asymptotic integration of the (1.1), (1.2) system was
presented. This method gives the asymptotic solution
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uj = vj(τ, yj) + O(ε), τ = εt, (1.3)

yj = x − 1

ε

∫ τ

0

λj(τ) dτ,

which is uniformly valid in the domain t ∈
[

0, O(ε−1)
]

. The asymptotic solu-
tion V = (v1, . . . , vn) was sought as the solution of the averaging system

∂vj

∂τ
= 〈fj(V )〉j , vj(0, yj) = u0j(yj). (1.4)

The functions fj(V ) were averaged along the characteristics of the nonpertur-
bated system

∂uj

∂t
+ λj(0)

∂uj

∂x
= 0.

This scheme of the averaging of system (1.1) was used in [1] under strong
requirement for the coefficients λj(τ):

d

dτ

(

λi(τ) − λj(τ)

λk(τ) − λj(τ)

)

≡ 0, ∀i, j, k. (1.5)

Therefore the method from [1] can be used only if all coefficients λj are some
combinations of one function α(τ): λj(τ) = λ0

jα(τ) + λ0.

In this work the coefficients λj(τ) ∈ C1 [0, τ0] of systems (1.1) satisfy the
following requirements: with all indexes j, s, p and ∀τ ∈ [0, τ0]:

λs(τ) 6= λp(τ), (1.6)

W (τ) ≡

∣

∣

∣

∣

∣

∣

1 1 1
λj(τ) λs(τ) λp(τ)
d λj(τ)

dτ
d λs(τ)

dτ
d λp(τ)

dτ

∣

∣

∣

∣

∣

∣

6= 0.

Conditions (1.5) are not compatible with (1.6) conditions and therefore in this
work we consider the new class of (1.1), (1.2) problems.

2. Method of Asymptotic Integration

We will consider the following functions fj in (1.1):

fj(u1, . . . , un) =
n
∑

s=1

n
∑

p=1

fjsp(us, up). (2.1)

This type of fj represents the typical problems of the asymptotic integrations
of (1.1),(1.2) system. Note that applications of (1.1) models has quadratic
nonlinearities [4, 5].

Asymptotic solution of (1.1), (1.2), (2.1) problem is the solution of the
integro–differential system:
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∂vj

∂τ
= fjjj (vj , vj) +

1

2π

∑

s6=j

∫ 2π

0

fjsj(vs(τ, y), vj) dy

+
1

2π

∑

p6=j

∫ 2π

0

fjjp(vj , vp(τ, z)) dz (2.2)

+
1

4π2

∑

s6=j

∑

p6=j

∫ 2π

0

∫ 2π

0

fjsp(vs(τ, y), vp(τ, z)) dy dz,

vj(0, yj) = u0j(yj).

Let fjsp and u0j be continuously differentiable functions. Then system
(2.2) has only one periodic solution

V = (v1, . . . , vn), vj(τ, yj) ≡ vj(τ, yj + 2π), τ ∈ [0, τ ′
0] .

Constant τ ′
0 ≤ τ0 and all the other constants care independent from ε. Exact

solution (u1, . . . , un) = U(t, x; ε) of the (1.1),(1.2) system exists if t ∈
[

0,
τ ′′
0

ε

]

.

Constant τ ′′
0 ≤ τ0, where τ0 = min{τ ′

0, τ
′′
0 } is denoted by τ0.

3. Substantiation of the Averaging

The difference of the exact and asymptotic solution is given by:

rj(t, x; ε) = uj(t, x; ε) − v(εt, x − 1

ε

∫ εt

0

λj(τ) dτ).

Functions rj must satisfy

∂rj

∂t
+ λj(εt)

∂rj

∂x
= ε

(

n
∑

k=1

hjk(t, x; ε)rk + µj(t, x; ε)

)

(3.1)

with zero initial conditions:

rj(0, x; ε) = uj(0, x; ε) − vj(0, x) = u0j(x) − u0j(x) ≡ 0. (3.2)

The functions µj(t, x; ε) in (3.1) are given by

µj =

(

fj(· · · ) −
∂vj

∂τ

)

∣

∣

∣

∣

∣

∣

∣

∣

τ = εt

yk = x − 1
ε

∫ εt

0
λk(τ) dτ

. (3.3)

All functions vk(τ, yk) in (3.3) are periodic. Therefore the µj can be writen as
Fourier series:

µj ∼
∑

ls,lp∈Z

µjlpls(τ) exp{ilsys + ilpyp}. (3.4)
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We demand, that functions fjsp and u0j be smooth and the series covergent:

∑

ls,lp∈Z

(|ls| + |lp|)
(

∣

∣µjlpls(τ)
∣

∣ +

∣

∣

∣

∣

d

dτ
µjlpls(τ)

∣

∣

∣

∣

)

.

We integrate (3.1),(3.2) system along characteristics x − 1
ε

∫ εt

0 λj(τ) dτ =
const:

rj(t, x; ε) = ε

∫ t

0

(

n
∑

k=1

hjkrk + µj(t̃, x − 1

ε

∫ εt

εt̃

λj(τ) dτ ; ε)

)

dt̃ . (3.5)

We substitute formula (3.4) into system (3.5) and give the integrals of har-
monics:

ε

∫ t

0

µjlslp(εt̃) exp(ils(x − 1

ε

∫ εt

0

λj(τ) dτ +
1

ε

∫ εt̃

0

(λj(τ) − λs(τ)) dτ)

+ilp(x − 1

ε

∫ εt

0

λj(τ) dτ +
1

ε

∫ εt̃

0

(λj(τ) − λp(τ)) dτ)) dt̃

= exp(i(ls + lp)yj)

∫ τ

0

µjlslp(τ̃ ) exp(i
1

ε
δjlslp(τ̃ )) dτ̃ .

There

δjlslp(τ) =

∫ τ

0

(ls(λj(τ) − λs(τ)) + (lp(λj(τ) − λp(τ))) dτ.

Note, that the averaging system (2.2) has no members, such that

δjlslp(τ) ≡ 0.

If the ls and lp are integer numbers, such that

∣

∣

∣
δ′jlslp(τ)

∣

∣

∣
> ν(ε). (3.6)

Then we integrate the inequality (3.6):

∣

∣

∣

∣

∫ τ

0

µjlslp(τ) exp

(

iδjlslp(τ)

ε

)

dτ

∣

∣

∣

∣

<
ε

ν(ε)

(

∥

∥µjlslp

∥

∥+
∥

∥

∥
µ′

jlslp

∥

∥

∥
(|ls| + |lp|)

ε

ν(ε)
Λ1

)

.

Here ‖·‖ is the maximum of the functions in the interval τ ∈ [0, τ0], constant
Λ1 ≥

∥

∥λ′
j(τ) − λ′

k(τ)
∥

∥, Hε is the set of all nonresonanace harmonics, c0 is a
positive constant:
∣

∣

∣

∣

∣

∣

∑

ls,lp∈Hε

exp (i(ls + lp)yj)

∫ τ

0

µjlslp(τ) exp

(

iδjlslp(τ)

ε

)

dτ

∣

∣

∣

∣

∣

∣

≤ c0
ε

ν(ε)
.



Applications of the Method of Stationary Phase 445

If condition (3.6) is not valid, i.e. ls, lp /∈ Hε, we have a resonance case. Denote
δ′jlslp

= α, δ′′jlslp
= β and consider the linear system







ls(λj(τ) − λs(τ)) + lp(λj(τ) − λp(τ)) = α,

ls(λ
′
j(τ) − λ′

s(τ)) + lp(λ
′
j(τ) − λ′

p(τ)) = β.
(3.7)

It follows from (1.6) that the determinant of (3.7)
∣

∣

∣

∣

λj − λs λj − λp

λ′
j − λ′

s λ′
j − λ′

p

∣

∣

∣

∣

≡ W (τ) 6= 0, ∀τ ∈ [0, τ0] .

Let point τ ′ be local extreme of δ′jlslp
(τ). Therefore, in this point system’s

(3.7) coefficient β = 0 and |α| > W0/Λ1, constant W0 = min
τ∈[0,τ0]

|W (τ)| > 0.

Then (3.6) unavailable only in the around the point s (δ′jlslp
(s) = 0).

Therefore, in system (3.7) α = 0 and

|β| > W0/Λ0 = β0, Λ0 ≥ ‖λj(τ) − λk(τ)‖ .

If α = 0, then nonzero solution of system (3.7) (|ls| + |lp| 6= 0) is given by

ϕ(τ) ≡ λj − λs

λj − λp
= − lp

ls
.

Function ϕ(τ) is monotonic:

ϕ′(τ) =
W (τ)

(λj − λp)
2 6= 0.

Therefore, function δ′jlslp
(τ) can have only one stationary point s ∈ (0, τ0).

Let us use the method of stationary phase and consider three intervals:

[0, s − η(ε)] , (s − η(ε), s + η(ε)) , [s + η(ε), τ0] .

In the first and third intervals:
∣

∣

∣
δ′jlslp

(τ)
∣

∣

∣
> β0η(ε). Therefore there exist

positive constants c1 and c2:
∣

∣

∣

∣

∣

∣

∑

ls,lp /∈Hε

exp(i(ls + lp)yj)

∫ τ

0

µjlslp(τ) exp(
iδjlslp(τ)

ε
) dτ

∣

∣

∣

∣

∣

∣

≤ c1
ε

η(ε)
+ c2η(ε). (3.8)

The function ν(ε) in (3.6) can be replaced by constant W0/Λ1. (3.8) is
valid with any function 0 < η(ε) < τ/2. Therefore, if η(ε) =

√
ε, we have

rj(t, x; ε) = ε

(

n
∑

k=1

∫ t

0

hjkrk dt̃

)

+ O(
√

ε).

Therefore,

|rj(t, x; ε)| < c3

√
ε, ∀t ∈

[

0,
τ0

ε

]

, x ∈ [0, 2π] .
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4. Conclusion

The main result of this work is the following: For system (1.1), (1.2), (2.1)
under conditions (1.6) averaging system (2.2) defines the following asymptotic

uj = vj(τ, yj) + O(
√

ε), τ = εt, yj = x − 1

ε

∫ τ

0

λj(τ) dτ.

which is uniformly valid in the domain t ∈
[

0, O(ε−1)
]

.
Note, that the (4.1) asymptotic solution is only of the O(ε) order ap-

proximation of the exact solution. It is not a limitation of the method, but
it is a price we should pay for more difficult class of conditions (1.6), com-
pared with conditions (1.5). In particular, if the problem satisfies nonreso-
nance conditions, we have ν = const in the inequality (3.6). Therefore, do not
exist harmonics ls, lp, which supply the conditions (3.8) and the order of the
asymptotic approximation in this case is O(ε).

The (1.1) system generalizes the case of constant coefficients λj , which
appears as the problem of long waves asymptotic write in Riemann invariants
[4, 5]. Similar problems were considered in [1, 7]. A survey of mathematical
results in asymptotic methods for waves interactions was presented in [2], see
also [3].

References

[1] P. L. Bhatnagar. Nonlinear waves in one-dimensional dispersive systems. Ox-
ford, 1979.

[2] L. A. Kalyakin. Long wavelength asymptotic. integrability equations as asymp-
totic limit of nonlinear systems. Uspechi matematicheskich nauk, 44(1), 5 – 34,
1989.

[3] J. Kevorkian and J. D. Cole. Mutiple scale and singular perturbation methods.
Springer-Verlang, New York, 1996.
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[5] A. Krylovas and R. Čiegis. Examples of Asymptotic Analysis of Hyperbolics
Equations. In: Progress in Industrial Mathematics at ECMI 2002, Springer -
Verlag, Berlin, 315 – 320, 2003.
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