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Abstract. This paper presents a discussion on problem of segmentation using
the level set method and the mean curvature problem for graphs. Its contribution
consists in combining the existing equations via the regularization parameter. To
obtain a numerical solution we use the finite volume method.
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1. Level Set Equation

Suppose we are given an interface separating one region from another. We are
given a speed k that tells how to move each point of the interface. The level
set approach, introduced by Osher and Sethian takes the original interface —
e.g. a curve in two dimensions — and embeds it into a surface in such way,
that the interface represents a level line of the surface called level set surface.
The idea is that instead of moving the interface, we move the corresponding
level set surface. To find where the interface is, we cut the surface at the level
corresponding to the interface.

Let Z(t) be the moving curve of the level set function u, i.e. u(Z(t),t) = c,
then differentiating in time we have

8,5’11/ = —Vu.atf. (11)

The speed k of the level line will depend on its (mean) curvature, given by
k= V. (%) and we move the level lines in the direction opposite to the

outward normal, given by \3—2\- Thus
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After substituting it into (1.1) and rearranging the terms we get

Vu

The equation (1.2) has only the viscosity solution, thus to be able to speak
about a variational solution, the equation must be regularized. We regularize
the equation (1.2) in the sense of Evans and Spruck [2], where

[Vu| = |Vu|. = &2 + [Vul2.

To finish the formulation of the level set problem we have

O Vu
% v ) =0 mQr=Ix0, (13
VeE?+ [Vul? <\/€2+|VU|2> or (13)

u(z,0) = u’(z) in £,
u(z,t) =u’(z) on I x 01,

where u is a computed level set function, £2 C IR? is a rectangular computa-
tional domain, e > 0 is a parameter, I = (0,7 is a time interval.

2. Level Set Equation in Segmentation

Segmentation can be defined as a piecewise constant graph that varies rapidly
across the boundaries between different objects and stays flat within it.

Now we will evolve an initial surface with corresponding function called
segmentation function. The segmentation will be the piecewise constant ap-
proximation of this surface, and not the approximation of the image itself.
For the purpose of segmentation, the equation (1.3) can be modified in such
way, that we modulate the speed of the level line by g(|VIy|), where Ij is the
segmented image and for a function g we take the function g(s) = 1/(1+ K s?).
The speed of the level line is slower in areas with large gradients usually typi-
cal for edges and faster in areas with small gradients usually typical for "inner
areas" and for noise. We get the equation

Vu

We have now two inputs for this equation: one is the segmented image I
and the other is the segmentation function u, where ug is a "peak" function
obtained by ug(z,y) = K/(1+ \/(x — s1)2 + (y — s,)?), where s, and s, are
the coordinates of the "peak". K is the scale, and is usually set in dependence
to the discretization.

During the evolution all level lines of the function u shrink with the speed
depending on their curvature, except of the level lines in the vicinity of the
image edges, where, due to the antradienis, spalis 11, 2005 at 5:00 pmfunction
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Figure 1. The segmentation according to (2.1).

g, the speed is slowed down. The "steady state" of a particular level line
corresponds to a boundary of a segmented object. An example of segmentation
is depicted in Fig. 1.

If the boundary of a segmented object is not closed, the algorithm is still
able to detect the object and complete the missing part of the boundary
with a line segment. After spilling out of the segmentation function across
the boundary, its level lines around the missing part of the boundary become
curved and principles of the curvature driven motion are applied.

The curve evolution and the level set models for segmentation have
been signiﬁcantly improved by finding a proper driving force in the form
—Vyg(|VIy(z)]) [1, 3]- The vector field —Vg(|VIy(z)|) has the important geo-
metric property it points towards regions where the norm of the gradient VI,
is large. Thus if an initial curve belongs to a neighborhood of an edge, then
it is driven towards this edge by this velocity field. We get the equation

dyu = [Vul.V. ( (V1)) |VW|E) (2.2)

3. Mean Curvature Problem for Graphs

The parameter ¢ can be used not only as a regularization factor, but also as
a modeling parameter. Because of ¢, the level set form of the mean curvature
flow is closely related to the mean curvature problem for graphs. If we have
a graph I'(¢ ) = {(z,u(x,t))|x € 2} and normal to I is chosen to be v(u) =

(Vu, _1), Q(u) = /14 |Vul?, then the normal velocity to I" can be written
— Vu

as V( )= Q( 7- The mean curvature of I' is given by H(u) = V.i\/m.

Equation V = — H, where V represents the normal velocity and H is the mean

curvature of the graph leads to a differential equation

8,5’11/ -V Vu (3 1)
1+ [Vul? VI [Vu]? )’ '

which is equal to (1.3) for ¢ = 1. In Fig. 2b) and Fig. 2¢) we can see the
result of processing the original data from the (Fig. 2a)) by the finite volume
scheme based on (3.1) after 5 resp. 50 time steps. The result of processing by
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the level set algorithm is visually very close to Fig. 2a): there is almost no
change because of the zero curvature in the normal direction to the level sets.

Figure 2. ¢ as a modeling factor.

4. Combining the Level Set Equation and Mean
Curvature for Graphs

(1.3) represents the mean curvature problem for graphs for ¢ = 1 and level set
equation for ¢ close to zero. Similarly, the equation (2.2) presents a segmen-
tation problem based on the mean curvature flow for graphs for ¢ = 1 and on
the level set equation for ¢ close to zero.

Let us start segmentation with ¢ = 1076 for a certain number of steps
necessary to form shocks on the part of the missing boundary (Fig. 3a)).
Then, to make the segmentation function flat, we use model

du 9(IVIy|))Vu
=V. , 4.1
V(g2([Vu))? + [Vul? (x/(ga(IVul))2+ IVu|2> 1

where g is the following function:

1076, for Oéthla
92(v) = 1
——, forTh <t<T.
1+ Kov? or -

Fig. 3 displays the following experiment. The image on the left depicts the
result at T} (77 = 40), when shocks are developed. Generally, T} can be set to
the time, in which the segmentation function stops to change. Then ¢ in the
algorithm changes according to the gradients: this parameter stays small on
the highest gradients where shocks have to be kept and is greater for smaller
gradients, where we wish to flatten the segmentation function. Images b) and
¢) show the evolution in the middle and final steps.

Though the parabolic equation (4.1) is nonlinear, a theory in [4] can be
applied to show that it has a unique weak solution in Ly(I, H!(2)).
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-10075,

Figure 3. Model (4.1). a) forming the shock, b) and c) flattening of the segmenta-
tion function.

Deriving the finite volume scheme. To obtain a numerical solution we
use a semi-implicit scheme based on the finite volume method. Its advantage
is, that it is stable for any size of time step parameter. We will subdivide
the continuous computational domain into rectangular regions and look for a
solution, which will be constant over each such region - control volume.

First we integrate equation over a control volume p C (2. After using
Green’s theorem, for any p we get the integral identity

|VI0|)VU 3 ds —
p/\/(92(|vu|))2+|Vu|2 /\/g2 N ENaE 0, (4.2)

where U is the outward unit normal vector to the boundary dp of the control
volume p. To discretize the integral form (4.2) in time we choose N as the
number of time steps and obtain the length of a uniform discrete time step

k= % Then at any discrete time ¢, = nk,n =1,..., N we replace the time
. . . u" —unt
derivative by the backward difference, i.e. 9;u by —————, where u", u" !

are solutions of (4.2) at times ¢, = nk, t,—1 = (n — 1)k, respectively.

We treat the spatial nonlinear terms of the equation using solution from
the previous time step and use approximation of the linear terms at the current
time level. Let value of u™ over p be denoted by %, and the value of a mirror
extension of u" - 4" over p be denoted by ;. Let 7 be a mesh of 2 with
cells (control volumes) p of measure m(p). For every cell p we consider a set
of neighbors N(p) consisting of all cells ¢ € 7, for which common interface of
p and ¢ is a line segment e, of non-zero measure m(ep,). We assume that for
every p, there exists a representative point x, € p such, that for every pair

p,q,q € N(p), the vector éz:?‘ is equal to unit vector 7,, which is normal

to the common interface e,, and oriented from p to g. Here, x,, is set just as
a center of the pixel. Let z,, be the intersection of the line segment e, and
m(epq)
leg—ap|”
Let 0 =t <t; < ... < tn,.. = T denote the time discretization with

tn, = tn_1 + k, where k: is the time step. For n = 0, ..., Nynax — 1 we look for
't p € 7 satisfying

the segment Z,7,. Then we define transmitivity coefficients Tyq :=
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an_|_1 g (ﬂ"+1 _ ﬂn—i—l
W m(p)= > Tpg(IVI|) L 2 —. (4.3)
K N o) VeV, D)2 + | Viig,

The system matrix is a sparse M-matrix, so the linear system is uniquely
solvable. It can be solved e.g. by the Gauss-Seidel method, eventually im-
proved by the SOR method. In the scheme we work with two types of gradi-
ents: Vi, computed on the control volume boundary dp and Vi, computed
on the control volume p. Let us repeat, that @™ is now mirror extension of
the data computed in the n-th discrete time step and u;, uy, denotes its
approximate values inside p and along Op, respectively.

Remark 1. (Computing the gradients on dp). The gradients of u along the
boundary Ou are approximated by their values in z,4, ¢ € N(p). In 2D, we
compute the gradients approximately with the stencil given by Fig. 4. For
horizontal boundary segments, the stencil is rotated. The stencil corresponds
to computing |VG, x u| instead of |Vu| using suitable kernel G,.. Let us note,
that |VGgy * u|<C,.

Gx Gy
-0.18 0.18 0,272 0,272
0717 9 0717 0 0
-0,18 0,18 0272 | 0,272

Figure 4. The small circles denote the position of x,q.

Remark 2. (Computing the gradients on a control volume p). We use simple
averaging given (in case of regular square grids) by

1
| R ————— E ar.1))? ar, |2 44
V| card(N (p)) VD) \/(gg(|Vupq )7+ Vi (4.4)
gEN(p

Acknowledgment

The work was supported by NATO Collaborative Linkage Grant PST.CLG.
979123 and The Interdisciplinary Center for Mathematical and Computational
Modeling in Warszaw.

References

[1] V. Caselles, R. Kimmel and G. Sapiro. Geodesic active contours. International
Journal of Computer Vision, 33(33), 61 — 79, 1991.



Segmentation Combining Approaches Based on Mean Curvature 439

[2] L.C. Evans and J. Spruck. Motion of level sets by mean curvature I. J. Diff.
Geom., 22(22), 635 — 681, 1997.

[3] S.Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum and A. Yezzi. Conformal
curvature flows: from phase transitions to active vision. Arch. Rat. Mech. Anal.,
134, 275 — 301, 1996.

[4] O.A. Ladyzhenskaja. Boundary Value Problems of Mathematical Physics.
Nauka, 1973. in Russian






