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Abstract. A semilinear reaction-diffusion equation with multiple solutions is con-
sidered in a smooth two-dimensional domain. Its diffusion parameter ε

2 is arbi-
trarily small, which induces boundary layers. Constructing discrete sub- and super-
solutions, we prove existence and investigate the accuracy of multiple discrete solu-
tions on layer-adapted meshes of Bakhvalov and Shishkin types. It is shown that one
gets second-order convergence (with, in the case of the Shishkin mesh, a logarithmic
factor) in the discrete maximum norm, uniformly in ε for ε ≤ Ch. Here h > 0 is
the maximum side length of mesh elements, while the number of mesh nodes does
not exceed Ch

−2. Numerical experiments are performed to support the theoretical
results.
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1. Introduction

Consider the singularly perturbed semilinear reaction-diffusion boundary-
value problem

Fu ≡ −ε24u+ b(x, u) = 0, x = (x1, x2) ∈ Ω ⊂ R
2, (1.1a)

u(x) = g(x), x ∈ ∂Ω, (1.1b)

where ε is a small positive parameter, 4 = ∂2/∂x2
1 + ∂2/∂x2

2 is the Laplace
operator, and Ω is a bounded two-dimensional domain whose boundary ∂Ω
is sufficiently smooth. Assume also that the functions b and g are sufficiently

1 This publication has emanated from research conducted with the financial support
of Science Foundation Ireland under the Basic Research Grant Programme 2004;
Grant 04/BR/M0055.
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smooth. We shall examine solutions of (1.1) that exhibit boundary layer be-
haviour.

The reduced problem of (1.1) is defined by formally setting ε = 0 in (1.1a):

b(x, u0(x)) = 0 for x ∈ Ω. (1.2)

Note that any solution u0 of (1.2) does not in general satisfy the boundary
condition in (1.1b).

In the numerical analysis literature it is often assumed—see [1, 5]—that
bu(x, u) > γ2 > 0 for all (x, u) ∈ Ω ×R

1, for some positive constant γ. Under
this condition the reduced problem has a unique solution u0 that is sufficiently
smooth in Ω̄, as can be seen by using the implicit function theorem and the
compactness of Ω̄. This global condition is nevertheless rather restrictive. E.g.,
mathematical models of biological and chemical processes frequently involve
problems related to (1.1) with b(x, u) that is non-monotone with respect to
u. Hence we consider problem (1.1) under the following weaker assumptions
from [4]:

• it has a stable reduced solution, i.e., there exists a sufficiently smooth so-
lution u0 of (1.2) such that

bu(x, u0) > γ2 > 0 for all x ∈ Ω; (A1)

• the boundary condition satisfies

∫ v

u0(x)

b(x, s) ds > 0 for all v ∈
(

u0(x), g(x)
]

′

, x ∈ ∂Ω. (A2)

Here the notation (a, b]′ is defined to be (a, b] when a < b and [b, a) when
a > b, while (a, b]′ = ∅ when a = b.

Note that if g(x) ≈ u0(x), then (A2) follows from (A1) combined with (1.2),
while if g(x) = u0(x) at some point x ∈ ∂Ω, then (A2) does not impose any
restriction on g at this point.

Conditions (A1), (A2) intrinsically arise from the asymptotic analysis of
problem (1.1) and guarantee that there exists a boundary-layer solution u
of (1.1) such that u ≈ u0 in the interior subdomain of Ω away from the
boundary, while the boundary layer is of width O(ε| ln ε|) [4]; see Theorem 1
for a precise statement. Note that assumption (A1) is local, i.e., the reduced
problem (1.2) is permitted to have more than one solution. Furthermore, if
multiple stable solutions of the reduced problem satisfy (A2), problem (1.1)
has multiple boundary-layer solutions; see Figure 1.

We make two further simplifying assumptions to facilitate our presenta-
tion. To avoid considering cases, assume that

u0(x) < g(x) for all x ∈ ∂Ω. (A3)

Throughout our analysis take
ε ≤ Ch, (A4)
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Figure 1. Multiple boundary-layer solutions of the model problem from [2, §5]: in
the interior subdomain a) u(x) ≈ ū0(x), b) u(x) ≈ −ū0(x), where ±ū0(x) are stable
solutions of the reduced problem (1.2).

where h > 0 is the maximum side length of mesh elements, while the number
of mesh nodes does not exceed Ch−2. This is not a practical restriction, and
from a theoretical viewpoint the analysis of a nonlinear problem such as (1.1)
would be very different if ε were not small.

In this paper we present (almost) second-order nodal maximum norm er-
ror estimates for the computed solutions of problem (1.1) on layer-adapted
meshes. A one-dimensional version of this problem was studied in [2]. We
extend the analysis in [2] to two dimensions.

Notation. Throughout this paper we let C denote a generic positive constant
that may take different values in different formulas, but is always independent
of h and ε.

2. Asymptotic Expansion and its Generalization

Let the boundary ∂Ω be described by x1 = ϕ(l), x2 = ψ(l), 0 ≤ l ≤ L, where
(ϕ(0), ψ(0)) = (ϕ(L), ψ(L)). We shall use the magnitude τ > 0 of the tangent
vector (ϕ′, ψ′) and the curvature κ of the boundary at (ϕ(l), ψ(l)) that are
defined by

τ =
√

ϕ′2 + ψ′2, κ = κ(l) =
ϕ′ψ′′ − ψ′ϕ′′

τ3
.

In a narrow neighbourhood of ∂Ω that will be specified later, introduce the
curvilinear local coordinates (r, l) by

x1 = ϕ(l) + rn1(l), x2 = ψ(l) + rn2(l), (2.1)

where (n1, n2) is the unit normal to ∂Ω at (ϕ(l), ψ(l)), i.e. it is orthogonal
to the tangent vector (ϕ′, ψ′) and defined by n1 = −ψ′/τ, n2 = ϕ′/τ . Since
∂Ω is smooth, there exists a sufficiently small constant C1 such that in the
subdomain Ω̄C1

= {0 ≤ r ≤ C1} the new coordinates are well-defined and
the mapping (r, l) 7→ (x1, x2) is a one-to-one and invertible. Throughout the
paper we shall use a smooth positive cut-off function ω(x) that equals 1 for
r ≤ C1/2 and vanishes in Ω̄\Ω̄C1

.
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Lemma 1. For the Laplace operator we have

4u = η−1 ∂

∂r

(

η
∂u

∂r

)

+ ζ
∂

∂l

(

ζ
∂u

∂l

)

,

where η := 1 − κr, ζ := (τη)−1.

Now introduce the stretched variable ξ := r/ε and the functions v0(ξ, l)
and v1(ξ, l) defined by

−
∂2v0
∂ξ2

+ b(x̄, u0(x̄) + v0) = 0,

−
∂2v1
∂ξ2

+ v1bu(x̄, u0(x̄) + v0) = −ξ
d

dr
b
(

x, u0(x) + t
)

∣

∣

∣

x=x̄,t=v0

−κ
∂v0
∂ξ

,

for ξ > 0, with the boundary conditions

v0(0, l) = g(x̄) − u0(x̄), v1(0, l) = 0, v0(∞, l) = v1(∞, l) = 0.

Here x = x(r, l) is defined by (2.1),

x̄ = x̄(l) := (ϕ(l), ψ(l)), η−1 ∂η

∂r

∣

∣

∣

r=0
=

−κ

1 − κr

∣

∣

∣

r=0
= −κ.

Theorem 1. [4, Theorem 3] Under hypotheses (A1), (A2), for sufficiently
small ε there exists a solution u(x) of (1.1) in a neighbourhood of the zero-
order asymptotic expansion u0(x) + v0(ξ, l)ω(x). Furthermore, for the first-
order asymptotic expansion

uas(x) := u0(x) + [v0(ξ, l) + εv1(ξ, l)]ω(x)

we have
∣

∣Fuas(x)
∣

∣ ≤ Cε2,
∣

∣u(x) − uas(x)
∣

∣ ≤ Cε2 for all x ∈ Ω̄.

To construct discrete sub- and super-solutions, we shall use the auxiliary func-
tion v(ξ, l; p), where p is a small real parameter, defined by

−
∂2v

∂ξ2
+ b(x̄, u0(x̄) + v) = pv,

v(0, l; p) = g(x̄) − u0(x̄), v(∞, l; p)) = 0.

Furthermore, set

β(x; p) := u0(x) +
[

v(ξ, l; p) + εv1(ξ, l)
]

ω(x) + C0p,

where C0 is a sufficiently small positive constant.

Lemma 2. There exists C0 > 0 such that for all |p| ≤ p0 we have

Fβ ≥ C0p γ
2 +O(ε2 + p2), if p > 0,

Fβ ≤ −C0|p| γ2 +O(ε2 + p2), if p < 0.
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Figure 2. Layer-adapted mesh.

3. Layer-Adapted Meshes

Introduce a small positive parameter σ that will be specified later. Let σ ≤ C1

so that the closed curve ∂Ωσ that is defined by the equation r = σ does not
intersect itself. Furthermore, let Ωσ be the interior of ∂Ωσ. Our problem will
be discretized separately in Ωσ and Ω \ Ωσ , to which we shall refer as the
interior region and the layer region respectively; see Figure 2.

The boundary-layer region Ω \ Ωσ is the rectangle (0, σ) × [0, L] in the
coordinates (r, l). Hence in this subdomain introduce the tensor-product mesh
{(ri, lj), i = 0, . . . , N, j = 0, . . .Nl}, where, as usual, r0 = 0, rN = σ, l0 = 0,
and lNl

= L. Furthermore, let {lj} be a quasiuniform mesh on [0, L], i.e.,
C−1h ≤ lj − lj−1 ≤ Ch. The choice of the layer-adapted mesh {ri} on [0, σ]
is crucial and will be discussed later; see (a),(b). Now we only assume that
ri − ri−1 ≤ Ch and C−1h−1 < N ≤ Ch−1.

In the interior regionΩσ introduce a quasiuniform Delaunay triangulation,
i.e., the maximum side length of any triangle is at most h, the area of any
triangle is bounded below by Ch2, and the sum of the angles opposite to
any edge is less than or equal to π. Then the piecewise linear finite element
discretization of the operator −4 yields an M -matrix. We also require that
both the interior and layer meshes have the same sets of nodes on ∂Ωσ.

(a) Set σ := 2γ−1ε| ln ε| and define a Bakhvalov-type mesh by

ri := r(i/N), i = 0 . . . , N, where r(t) = −2γ−1ε ln(1− t) for t ∈ [0, 1− ε].

(b) Define a Shishkin mesh as follows. Set σ = 2γ−1ε lnN and introduce a
uniform mesh {ri}

N
i=0 on [0, σ], i.e. ri − ri−1 = σ/N = 2γ−1εN−1lnN .

4. Z-Field Discretization

Definition 1. An operator H : R
n → R

n is a Z-field if for all i 6= j the
mapping xj 7→

(

H(x1, x2, . . . , xn)
)

i
is a monotonically decreasing function

from R to R when x1, . . . , xj−1, xj+1, . . . xn are fixed.
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Lemma 3. [2, 3] Let H : R
n → R

n be continuous and a Z-field. Let r ∈ R
n

be given. Assume that there exist α, β ∈ R
n such that α ≤ β and Hα ≤ r ≤

Hβ. (The inequalities are understood to hold true component-wise.) Then the
equation Hy = r has a solution y ∈ R

n with α ≤ y ≤ β.

Remark 1. Let X1, X2 . . . , Xn be interior points of Ω, while X̄1, X̄2 . . . , X̄m be
on ∂Ω, and U ∈ R

n+m be a discrete function defined at these points. Suppose
that F h : R

n+m → R
n has the form

F hU = ε2 ΛU +
[

b(Xi, Ui)
]n

i=1
,

where Λ is an M -matrix discretization of the operator −4. Then the mapping

(X1 . . . , Xn, X̄1, . . . , X̄m) 7→
(

F hU1, . . . , F
hUn, g(X̄1), . . . , g(X̄m)

)

is a Z-field.

Thus to invoke the theory of Z-fields we require the following:

(i) an M -matrix discretization of −4;
(ii) the discretization of b(x, u) at any interior mesh point Xi involves only

Uk with k = i. Hence we use finite differences in the layer region and the
lumped mass finite elements on Delaunay triangulations in the interior
region.

Theorem 2. There exists a discrete solution U on the Bakhvalov/Shishkin
meshes (a)/(b) that satisfies

|U(Xi) − u(Xi)| ≤ Ch2| lnh|m for all mesh nodes Xi.

where m = 0 for the Bakhvalov mesh and m = 2 for the Shishkin mesh.

5. Numerical Results

Our model problem is (1.1) in the domain Ω as in Figure 2 with

b(x, u) =
(

u− ū0(x)
)

u
(

u+ ū0(x)
)

, ū0(x) = x2
1 + x1 + 1.

Here ±ū0(x) are two stable solutions and 0 is an unstable solution of the
corresponding reduced problem. The boundary condition g(x) = (x1 − x2

1)/3
satisfies (A2) for both ±ū0; see Figure 1. Table 1 presents numerical results
for computed solutions close to ū0 on the Bakhvalov mesh. We give rates of
convergence and maximum nodal errors computed as described in [2, §4].
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Table 1. Bakhvalov mesh. Rates of convergence and maximum nodal errors.

N ε = 10−2
ε = 10−4

ε = 10−8

32 2.010 2.011 2.011
64 1.995 1.997 1.997
128 1.995 2.001 2.001

32 3.745e-3 3.842e-3 3.843e-3
64 9.296e-4 9.534e-4 9.536e-4
128 2.333e-4 2.388e-4 2.388e-4
256 5.854e-5 5.967e-5 5.968e-5
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