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Abstract. We present a new approach for finding convergence rates in Tikhonov
regularization based on the consideration of approximate source conditions and cor-
responding distance functions. In this context, we distinguish logarithmic, power
and exponential decay rates for the distance functions and their consequences. An
application to multiplication operators is given. Moreover, some ideas of generaliza-
tion are mentioned concerning the fact that the benchmark of the distance functions
can be shifted.
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1. Introduction

Let X and Y be infinite dimensional Hilbert spaces, where the symbol ‖ · ‖
denotes the generic norm in both spaces as well as associated operator norms.
In this paper, we are going to study ill-posed linear operator equations

Ax = y, x ∈ X, y ∈ Y (1.1)

with injective and bounded linear operators A : X → Y having a non-closed
range R(A), for which the stable approximate solution requires regularization
methods. In the sequel we focus on the Tikhonov method (see, e.g., [1, 2, 4, 10])
as a standard approach. Let x0 ∈ X be the unique solution of equation (1.1)
for an exact right-hand side y = Ax0 ∈ Y . Instead of y we assume to know
the noisy data element yδ ∈ Y with noise level δ > 0 and

‖yδ − y‖ ≤ δ.
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We distinguish regularized solutions

xα = (A∗A + αI)
−1

A∗ y

with regularization parameter α > 0 in the case of noise-free data and

xδ
α = (A∗A + αI)−1 A∗yδ

in the case of noisy data.
Here we call the noise-free error function

f(α) := ‖xα − x0‖ = ‖α (A∗A + αI)
−1

x0‖ (α > 0) (1.2)

profile function for fixed A and x0. Taking into account the noise level δ this
function determines the total regularization error of Tikhonov regularization

e(α, δ) := ‖xδ
α − x0‖ ≤ ‖xα − x0‖ + ‖xδ

α − xα‖ (1.3)

with the well-known estimate

e(α, δ) ≤ f(α) + ‖ (A∗A + αI)
−1

A∗(yδ − y)‖ ≤ f(α) +
δ

2
√

α
. (1.4)

2. Convergence Rates for Tikhonov Regularization

Based on Approximate Source Conditions

To obtain convergence rates for the Tikhonov regularization and other linear
regularization methods, in the recent years general source conditions

x0 = ϕ(A∗A) w (w ∈ X) (2.1)

with index functions ϕ in the sense of [8] were used (see also [7, 9]). For the
Tikhonov regularization method the following proposition can be derived from
the literature.

Proposition 1. We assume that (2.1) holds and the index function ϕ(t) is
concave for 0 ≤ t ≤ t̂ with some positive constant 0 < t̂ ≤ ‖A‖2. Then the
profile function (1.2) satisfies an estimate

f(α) = ‖α (A∗A + αI)
−1

ϕ(A∗A) w‖ ≤ K ϕ(α) ‖w‖ (0 < α ≤ α) (2.2)

for some α > 0 and a constant K ≥ 1 which is one for t̂ = ‖A‖2. Hence, we
have

e(α, δ) ≤ K ϕ(α) ‖w‖ +
δ

2
√

α
(0 < α ≤ α) (2.3)

for the total regularization error.

In this paper, we present an alternative approach for finding estimates of
the form (2.2) and (2.3) and consequently convergence rates for the Tikhonov
regularization on the basis of the following lemma. This approach avoids the
use of explicit general source conditions (2.1). For a couple of more details
and applications concerning that method we refer to the papers [3, 5].
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Lemma 1. Based on the distance function

d(R) := inf {‖x0 − A∗ v‖ : v ∈ Y, ‖v‖ ≤ R} (2.4)

that measures for x0 the violation of the specific source condition

x0 = A∗ v0 (v0 ∈ Y, ‖v0‖ ≤ R) , (2.5)

we obtain

f(α) = ‖xα − x0‖ ≤ d(R) +

√
α

2
R (2.6)

for all α > 0 and R ≥ 0 as an estimate for the profile function of regularized
solutions in Tikhonov regularization.

Proof. Let v ∈ Y with ‖v‖ ≤ R . Then based on formula (1.2) we can
estimate by the triangle inequality as follows:

f(α) = ‖α (A∗A + αI)
−1

x0 − α (A∗A + αI)
−1

A∗v + α (A∗A + αI)
−1

A∗v‖
≤ ‖α (A∗A + αI)

−1
(x0 − A∗v)‖ + ‖α (A∗A + αI)

−1
A∗v‖

≤ α ‖ (A∗A + αI)
−1 ‖ ‖x0 − A∗v‖ + α ‖ (A∗A + αI)

−1
A∗‖ ‖v‖

≤ α 1

α ‖x0 − A∗v‖ + α 1

2
√

α
‖v‖ ≤ ‖x0 − A∗v‖ + 1

2

√
α R .

Since the inequality f(α) ≤ ‖x0 − A∗v‖ + 1

2

√
α R thus obtained remains

valid if we substitute ‖x0 − A∗v‖ by inf {‖x0 − A∗ v‖ : v ∈ Y, ‖v‖ ≤ R}, we
immediately find the inequality (2.6). This proves the lemma. �

Evidently, for every x0 ∈ X the nonnegative distance function d(R) de-
pending on the radius R ∈ [0,∞) is well-defined and non-increasing with
lim

R→∞
d(R) = 0 as a consequence of the injectivity of A and R(A∗) = X .

The distance function d(R) expresses the behavior of x0 with respect to the
benchmark condition (2.5).

Note that an estimate

f(α) ≤
√

d2(R) + α R2 ≤ d(R) +
√

α R (2.7)

similar to (2.6) directly follows from Theorem 6.8 in [1]. The proof of this
theorem, however, is completely different from that of our Lemma 1. The in-
equalities (2.7) were basic for convergence rate results presented in the papers
[5] and [6], but it is evident that the same results can also be derived from
Lemma 1.

Example 1 [Logarithmic type decay]. If d(R) decreases to zero very slowly as
R → ∞, the resulting rate for f(α) → 0 as α → 0 is also very slow. Here, we
consider the family of distance functions

d(R) ≤ K (ln R)−p, R ≤ R < ∞ (2.8)
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for some constants R > 0, K > 0 and for parameters p > 0. By setting
R := α−κ (0 < κ < 1

2
) and taking into account that α = o ((ln(1/α))−p) as

α → 0 we have from Lemma 1 and (2.8)

f(α) ≤ K̃ (ln(1/α))
−p

(0 < α ≤ α)

for some α > 0 and a constant K̃ > 0. Then by using the a priori parameter
choice α(δ) = c0 δχ with some exponent 0 < χ < 2 we obtain the logarithmic
convergence rate

e(α(δ), δ) = O
(
(ln (1/δ))

−p
)

as δ → 0

discussed, e.g., in [7] with respect to general source conditions (2.1) and cor-
responding logarithmic index functions ϕ.

Example 2 [Power type decay]. If d(R) behaves as a power of R, i.e.,

d(R) ≤ K R
γ

γ−1 (R ≤ R < ∞) (2.9)

with parameters 0 < γ < 1 and constants R > 0, K > 0, then by setting

R := α
γ−1

2 we derive from Lemma 1 an estimate

f(α) ≤ K̃ α
γ

2 (0 < α ≤ α)

for some α > 0 and a constant K̃ > 0. Here, the negative exponent γ/(1− γ)
in (2.9) attains all positive values when γ covers the open interval (0, 1). If

the a priori parameter choice α(δ) ∼ δ
2

1+γ is used, we find from (1.4)

e(α(δ), δ) = O
(
δ

γ

1+γ

)
as δ → 0 . (2.10)

For 0 < γ < 1 formula (2.10) includes all Hölder convergence rates that are
slower than the rate O(

√
δ) which characterizes the source condition (2.5).

Example 3 [Exponential type decay]. Even if d(R) falls exponentially, i.e.,

d(R) ≤ K exp (−c Rq) (R ≤ R < ∞)

for parameters q > 0 and constants R > 0, K > 0 and c ≥ 1

2
, the convergence

rate O(
√

δ) cannot be obtained on the basis of Lemma 1. From (2.6) we have

with R := (ln(1/α))
1/q

the estimate

f(α) ≤ K̃ (ln(1/α))
1/q √

α (0 < α ≤ α)

for some α > 0 and a constant K̃ > 0. Hence with α(δ) ∼ δ we derive a
convergence rate

e(α(δ), δ) = O
(
(ln(1/δ))

1/q
√

δ
)

as δ → 0,
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which is only a little slower than O(
√

δ).

In the paper [6] one can find sufficient conditions for the Examples 1 and
2 formulated as range inclusions with respect to R(A∗) and also examples
of compact operators A that satisfy such conditions. On the other hand, the
cases of Examples 2 and 3 are illustrated below in the context of non-compact
multiplication operators.

3. An Application to Multiplication Operators

In this section we consider X = Y = L2(0, 1) and specify A as a multiplication
operator

[A x] (t) = m(t) x(t) (0 ≤ t ≤ 1)

defined by a multiplier function m ∈ L∞(0, 1) with essential zeros such that
R(A) is not closed. For simplicity, let us assume

x0(t) = 1 (0 ≤ t ≤ 1) (3.1)

in the following two situations. Then we can formulate the following results.
For proofs we refer to [5].

Proposition 2. For the solution (3.1) of equation (1.1) and the multiplier
function

m(t) = t (0 ≤ t ≤ 1)

we have with some constant R > 0 an estimate of the form

d(R) ≤
√

2

R
(R ≤ R < ∞)

for the distance function (2.4) of the pure multiplication operator A.

The situation of Proposition 2 corresponds with the case γ = 1

2
in Exam-

ple 2 and yields f(α) = O( 4
√

α) implying the Hölder rate O( 3
√

δ), which is
order optimal in that situation.

Proposition 3. For the solution (3.1) of equation (1.1) and the multiplier
function

m(t) =
√

t (0 ≤ t ≤ 1)

we have with some constant R > 0 an estimate of the form

d(R) ≤ exp

(
−1

2
R2

)
(R ≤ R < ∞)

for the distance function (2.4) of the pure multiplication operator A.

Obviously, the situation of Proposition 3 corresponds with the case

c = 1

2
and q = 2 in Example 3 and yields f(α) = O

(√(
ln 1

α

)
α

)
. For that

situation our alternative approach does not provide us with the order optimal
convergence rate f(α) = O (

√
α). This is a drawback of the suggested method

based on Lemma 1. By construction of this approach we cannot obtain higher
order rates f(α) = O (αµ) with µ ≥ 1

2
. This is some kind of limitation for the

presented technique.
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4. Shifting the Benchmark

In order to overcome the limitation mentioned above, we can replace the
specific source condition (2.5) by a general source condition (2.1) with some
index function ϕ. Consequently we have to consider the appropriate distance
function

d̃(R) := inf {‖x0 − ϕ(A∗A) w‖ : w ∈ X, ‖w‖ ≤ R}

with a shifted benchmark. Here, d̃(R) measures the violation of x0 with respect
to the shifted benchmark. Based on formula (2.2) an analogue of Lemma 1
holds at least for any concave index function ϕ. Then for the case ϕ(t) = t,
which corresponds with the saturation of Tikhonov regularization, instead of
(2.6) we have the estimate

f(α) ≤ d̃(R) + αR

for all α > 0 and R ≥ 0. This may yield all convergence rates which are slower
than f(α) = O(α) provided that a sufficiently rapid decay of d̃(R) → 0 as
R → ∞ occurs. However, it is forthcoming work of the author to study the
decay behavior of d̃(R) in detail for examples.

References

[1] J. Baumeister. Stable Solution of Inverse Problems. Vieweg, Braunschweig,
1987.

[2] H.W. Engl, M. Hanke and A. Neubauer. Regularization of Inverse Problems.
Kluwer, Dordrecht, 1996.

[3] M. Freitag and B. Hofmann. Analytical and numerical studies on the influence
of multiplication operators for the ill-posedness of inverse problems. Journal of

Inverse and Ill-Posed Problems, 13, 123 – 148, 2005.
[4] C.W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Integral

Equations of the First Kind. Pitman, Boston, 1984.
[5] B. Hofmann. Approximate source conditions in Tikhonov-Phillips regulariza-

tion and consequences for inverse problems with multiplication operators. Math-

ematical Methods in the Applied Sciences, 29, 2006. In press
[6] B. Hofmann and M. Yamamoto. Convergence rates for Tikhonov regularization

based on range inclusions. Inverse Problems, 21, 805 – 820, 2005.
[7] T. Hohage. Regularization of exponentially ill-posed problems. Numerical

Functional Analysis and Optimization, 21, 439 – 464, 2000.
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