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1. Introduction

The Millennium bridge on the river Thames in London was closed after two
days of its inauguration in June 2000, because, on its opening day it started to
wobble due to the weights of thousands of people who rushed to see the bridge
on the first day. This is an example of a dangerous vibration phenomenon,
called resonance, which occurs when some natural frequencies of the vibrating
systems become close to those of external forces. In this case, the external force
was the weights of the human bodies. Other classical examples of resonance
include fall of the Tacoma bridge in the state of Washington in USA, and
the of the Broughton bridge in England. In the case of Tacoma bridge, the
external force was gusty wind, and in the case of the Broughton bridge, it
was the weight of the soldiers marching in the bridge. Thus, mathematically,
a resonance problem is the one of reassigning the few resonant frequencies
(eigenvalues) to desired locations, while keeping the remaining large number
of them and corresponding eigenvectors unchanged.

Such problems, when solved using feedback control, are called Quadratic
Partial Eigenvalue Assignment and Partial Eigenstructure Assignment prob-
lems (QPEVAP and QPESAP). The use of feedback, unfortunately, destroys
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the symmetry. While control applications do not demand that the updated
model remains symmetric [15, 25], there are other practical problems, such as
the Model Updating Problem (MUP), for which preservation of symmetry
and other properties is crucial. The Model Updating Problem is a practi-
cal industrial problem and arises in aerospace, manufacturing, automobile,
and other vibration industries. In these industries, a theoretical finite-element
generated symmetric model often needs to be updated using a few measured
eigenvalues and eigenvectors, obtained form a practical structure in such a
way that the updated model can be used with confidence for future designs
[10, 13].

For useful viable practical applications, these problems should be solved
satisfying certain mathematical, computational, and engineering requirements.
These requirements include:

• The updated model should be physically meaningful and be related to
physical changes to finite elements in the original model.

• The problems should be solved without a priori model reduction and/or
transformation to a convenient form, such as to a standard first-order prob-
lem; because, some important properties of the model might be completely
destroyed during these procedures, and furthermore, these procedures may
be computationally dangerous.

• The invariance of the part of the spectrum and the eigenvectors, as required
by the problems, should be ascertained with mathematical results, since
it is impossible to verify these in a computational or experimental setting,
because of the very high order nature of these models.

• The computational algorithms should use only a small subset of the eigen-
values and eigenvectors. This is because the underlying quadratic eigen-
value problem is nonlinear and the state-of-the-art techniques are capable
of computing only a few extremal eigenvalues and eigenvectors [12, 26].
The computational schemes should also be able to take advantage of the
exploitable properties such as the sparsity, bandness, positive definiteness,
etc., often offered by the mathematical models.

In current engineering practice, most methods, especially those for the
MUP fail to satisfy these requirements. In particular, the hardest part of
each of these problems, namely, keeping a large part of the spectrum and
eigenvectors invariant in the updated model, is hardly considered. It is only
hoped that they will not be severely affected by an update.

In the last few years, the author and his collaborators have developed a
novel approach, meeting most of the above mentioned challenges, for QPEVAP
and QPESAP. In particular, it works exclusively with the quadratic pencil
without any a priori model reduction or transformation to standard first-
order problem and mathematically guarantees the invariance of the required
spectrum and the eigenvalues.

A similar approach has also been developed for the model updating prob-
lem. It is to be stressed in this context that there is a fundamental difference
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between the QPEVAP and QPESAP. The MUP requires that the updated
model remains symmetric and use of feedback control is not a requirement.

Two new numerically viable methods and the supporting mathematical
theories have been developed in the Ph.D dissertation of J. Carvalho [3] and
in [5]. Both the methods are capable of meeting the two toughest requirements
of the problem: preserving the symmetry and retaining the large number of
eigenvalues and eigenvectors that do not participate in updating. Furthermore,
unlike all the previous methods, neither requires model reduction or expansion
of the eigenvectors.

In spite of these new developments, the problem has not been fully solved.
The method in [3] solves the problem in case of an undamped model, and
the other [5] solves a related problem on symmetric eigenvalue embedding.
Although not originally designed to solve the MUP, it does constitute a so-
lution when only the measured spectrum (but not eigenvectors) is considered
for updating.

The purpose of this paper is to present a brief overview of the above re-
cently developed techniques for the inverse problems under considerations.
The emphasis is on the clear presentations of the algorithms for better and
easy understanding of the practicing engineers and highlighting the engineer-
ing and computational advantages and disadvantages.

2. Problem Formulation, Background and Motivations

2.1. Model updating problem

A finite-element model of a vibrating structure can be represented as

M (̈t) + Cẋ(t) + Kx(t) = 0

where M, C, and K, each of order n, are called, respectively, the mass, stiffness
and damping matrices. In general, it is assumed that

M = MT > 0, K = KT ≥ 0, C = CT .

Assuming a solution x(t) = ueλt, one obtains the quadratic eigenvalues prob-
lem:

(λ2M + λC + K)u(t) = 0.

The matrix P (λ) = λ2M + λC + K, called the quadratic matrix pencil, and
it has 2n eigenvalues and 2n eigenvectors.

Let {λ1, ..., λp; λp+1, λ2n} and {x1, ..., xp; xp+1, x2n} be the eigenvalues and
eigenvectors of P (λ). Suppose that only a small subset p (p << 2n), say
{λ1, ..., λp} and {x1, ..., xp}, are computed. Let {µ1, ..., µp} and {v1, ..., vp}
be the corresponding measured ones from a real-life structure. Very often in
practice, the eigenvalues and eigenvectors of this theoretical finite-element
generated matrix pencil do not match well with those of measured ones.
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A vibration engineer then needs to update this model so that the inac-
curate modeling assumptions can be corrected in the original model and the
updated model can the be used in future designs with confidence. In the con-
text of aerospace applications (such as those at the Boeing company), the
measured data are generated from a ground vibration test, and the updated
model is used in the future for flutter analysis.

Mathematically, the problem might be defined as follows:
MUP: Given the symmetric finite-element quadratic pencil (M, C, K),

with a set of computed eigenpairs {λk, xk}, k = 1, ..., p and a set {µk, vk}, k =
1, ..., p of measured eigenvalues and eigenvectors, find an updated symmetric
pencil (MU , CU , KU ) such that:

(i) The subset {λk, xk} is replaced by {µk, vk}, k = 1, ..., p as eigenvalues and
the corresponding eigenvectors of the updated pencil (MU , CU , KU ),

(ii) The remaining subset of 2n− p eigenvalues and the corresponding eigen-
vectors of (MU , CU , KU ) remain the same as those of (M, C, K).

Remark 1. The requirement (ii) is known as the no spill-over phenomenon in
the engineering literature. Satisfaction of this requirement guarantees that the
modal parameters, not related to the physical measurements, will not change.

2.2. Quadratic partial eigenvalue and eigenstructure assignment

problems

Suppose that a control force of the form Bu(t) is applied to the vibrating struc-
ture, where B is the control matrix and u(t) is the control vector. Choosing
u(t) = F1ẋ(t) + F2x(t), we obtain the second-order closed-loop system

M (̈t) + (C − BF1)ẋ(t) + (K − BF2)x(t) = 0

with the associated quadratic pencil

Pc(λ) = λ2M + λ(C − BF1) + (K − BF2).

as the closed-loop pencil. Let {λ1, ..., λp} be a self-conjugate set of resonant
eigenvalues and {x1, ..., xp} be the corresponding eigenvectors of P (λ), as
defined above.

Suppose that the stiffness and damping matrices are to be modified us-
ing the control matrix B ∈ R

n×m (m ≤ n) such that the set {λ1, ..., λp}
is replaced by another self-conjugate set, {µ1, ..., µp}, leaving the remaining
(2n − p) eigenvalue unchanged. This gives rise to:

QPEVAP: Find real feedback matrices F1 and F2, of each order m×n,
such that the closed-loop pencil PU (λ) = λ2M + λ(C − BF1) + (K − BF2)
has the spectrum {µ1, ..., µp; λp+1, ..., λ2n}.

While the eigenvalues determine the rate at which the system response
decays or grows, the eigenvectors determine the shape of response. Thus,
the reassignment of both a set of eigenvalues and the eigenvectors should be
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considered. Unfortunately, the problem in this case may not be solvable if the
control matrix B is given a prior [1]. This leads to:

QPESAP: Find a real control matrix B of order n×m (m < n) and real
feedback matrices F1 and F2 such that the spectrum of the updated pencil
PU (λ) = λ2M + λ(C −BF1) + (K −BF2) is the set {µ1, ..., µp; λp+1, ..., λ2n}
with {xc1

, xc2
, ..., xcp

; xp+1, ..., x2n} as the associated eigenvectors.

3. Existing Methods and their Drawbacks

The model updating problem (MUP) is of immense practical importance and
arises in aerospace, automobile, and other vibration industries. The problem,
therefore, has been very widely studied and many results and methods exist
(see [8, 10, 13]). The problem remains unsolved and the existing methods
have severe computational and engineering limitations, which restrict their
usefulness in practical applications.

Most of the existing methods deal with updating the linear pencil K−λM ,
rather than the quadratic pencil P (λ). Unfortunately, even in this simpler
case, the methods fail to produce updated pencils that are physically mean-
ingful. These methods preserve the symmetry and the measured eigenvalues,
and eigenvectors are incorporated rather accurately into the updated model;
however, they ”can not guarantee that extra, spurious modes are not intro-
duced into the range of the frequency range of interest”([13], pp.127). In gen-
eral, none of these methods is capable of completely retaining the eigenvalues
and eigenvectors of the model that are not to be affected by updating.

There are a few other methods [16, 17, 28] that consider damping. Thus,
they actually work with the quadratic pencil itself. These methods come in
two stages.

In stage I, the measured eigenvalues and eigenvectors are incorporated into
the model using feedback control. Unfortunately, in the process of doing so,
the symmetry is destroyed.

In stage II, an optimization technique is used to recover the symmetry.
The difficulties with these methods are:
(i) The feedback control techniques are not usually numerically viable,
(ii) Though the optimization techniques improve the symmetry, this “

will not always make the resulting damping and stiffness matrices symmetric”
([13], p.152);

(iii) No spill-over can be guaranteed.

Another practical difficulty with all these methods is that either a model
reduction technique has to be applied to the FEM or measured mode shapes
have to be expanded to the full length of the FEM. This is because the data
(eigenvectors) measured experimentally from a real-life structure are very of-
ten incomplete in the sense that, due to hardware limitations, it can be mea-
sured only at a subset of the degrees of freedom of the finite element model.
While the finite element models can be of several thousand degrees of freedom,
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the measured eigenvectors from a practical structure can be of lengths of, at
most, a couple hundred. Therefore, comparing the analytical eigenvectors with
those from a real-life structure that has different lengths becomes impossible
in practice unless some measures are taken to fill-in the missing entries or the
order of the model is reduced. Although good algorithms for model reduction
in first-order state-space systems exist [2, 9, 14], model-reduction algorithms
that work directly in matrix second-order models are virtually non-existent.

An obvious way to solve the quadratic eigenvalue assignment and related
problems is to transform such a problem to a standard first-order problem,
for which there exists excellent numerical methods [6, 22], including some for
partial [7, 23] and robust and minimum norm assignments [18, 19, 20, 21, 27].
This technique might need an ill-conditioned matrix inversion or it will lead to
a descriptor system problem, the methods for which are not well-developed.
Furthermore, some of the important properties, offered by practical problems,
such as positive definiteness, bandness, and sparsity, will be destroyed.

The Independent Modal Space Control (IMSC) approach, popular in en-
gineering literature, aims at solving these problems in quadratic setting by
decoupling, but unfortunately, it requires the knowledge of the complete spec-
trum of the quadratic pencil and the eigenvectors for implementation. In addi-
tion, a stringent requirement on the commutativity of the coefficient matrices
has to be satisfied [15]. Above all, to handle large and sparse problems, which
naturally arise in structural dynamics and other vibration applications, the
order of the model has to be reduced by using a model reduction technique.

3.1. New results on MUP

The author and his collaborators have developed two new methods for the
MUP.

Model updating using incomplete data

This method stated below has the practical significance that it can deal
with the problem of incomplete measured data, described in the previous sec-
tion, without a priori model reduction or expansion of the eigenvectors. First,
the mathematical results that grantee the existence of solution of the MUP in
the case when damping is assumed to be zero are stated below. Consider the
undamped symmetric positive semidefinite quadratic pencil P (λ) = λ2M +K.
Let Λ1 = diag (λ1, λ2, ..., λp) and X1 be the corresponding eigenvector ma-
trix. Let Σ2

1 be a matrix containing information about the measured eigen-
values and Y11 be the corresponding eigenvector matrix consisting only of the
first m measured components. Let Λ2 = diag(λp+1, ..., λ2n).

Theorem 1. (Spectrum and eigenvector invariance by updating). As-
sume that Λ1 and Λ2 do not have a common eigenvalue. Then, for every
symmetric matrix φ, the updated pencil PU (λ) = λ2M + KU , where

KU = K − MX1φXT
1 M

is such that (2n−p) eigenvalues λp+1, ..., λ2n and the corresponding eigenvec-
tors of this pencil are the same as those of P (λ).
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The challenge now is to choose the matrix φ in such a way that
(i) the missing components of the measured eigenvector matrix will be

appropriately computed,
(ii) the updated pencil will also contain the measured eigenvalues and

eigenvectors.

To this end, the following result is proved:

Partition M = [M1, M2] and K = [K1, K2], where M1, K1 ∈ R
n×p. Let

Y1 =

(

Y11

Y12

)

, where Y12 is the missing part of the measured eigenvectors. Let

MX1 = (U1, U2)

(

Z

0

)

be the QR factorization of MX1. It is shown that, if Y12 is found by solving
the Sylvester equation:

UT
2 M2Y12(Σ

2
1)2 + UT

2 K2Y12 = −UT
2 (K1Y11 + M1Y11(Σ

2
1)2),

followed by computing φ satisfying

(Y T
1 MX1)φ(Y T

1 MX1)
T = Y T

1 MY1(Σ
2
1)2 + Y T

1 KY1,

and this φ is used in forming KU in Theorem 3.1, then the spectrum of the
updated pencil is:

Ω(λ2M + KU ) = {µ1, ..., µp; λp+1, ..., λ2n} .

Theorem 1 along with the above result constitute a complete solution in
the undamped case (C = 0) and is the state-of-the-art result on this problem.

Algorithm 1. Modeling Updating of an Undamped Symmetric Positive Semidef-
inite Model using Incomplete Measured Data

Step 1: Form the matrices Σ2
1 ∈ R

m×m and Y11 ∈ R
m×m from the avail-

able data. Form the corresponding matrices Λ2
1 ∈ R

n×m and X1 ∈ R
n×m.

Step 2: Compute the matrices U1 ∈ R
n×m, U2 ∈ R

n×(n−m) and Z ∈
R

m×m from the QR factorization:

MX1 = [U1 U2]

[

Z

0

]

.

Step 3: Partition M = [M1 M2], K = [K1 K2] where M1, K1 ∈ R
n×m.

Step 4: Solve the following equation to obtain Y12 ∈ R
(n−m)×m:

UT
2 M2Y12Σ

2
1 + UT

2 K2Y12 = −UT
2 [K1Y11 + m1Y11Σ

2
1 ]

and form the matrix

Y1 =

[

Y11

Y12

]

.
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Step 5: Compute the matrix L ∈ R
m×m and the diagonal matrix J ∈

R
m×m such that LJLT = Y T

1 MY1 is a symmetric (LDLT ) factorization of
Y T

1 MY1. Update the matrix Y1 by Y1 ↔ Y1(L
−1)T .

Step 6: Compute Ψ ∈ R
m×m by solving the following system of equations:

(Y T
1 MX1)Ψ(Y T

1 MX1)
T = Y T

1 MY1(Σ1)
2 + Y T

1 KY1

Step 7: Update
K̃ = K − MX1ΨXT

1 M.

Remark 2. The algorithm above can also be used when a complete measured
data is available. In this case, Steps 2, 3 and 4 must be skipped. We recommend
doing this when the measurements of Σ1 and Y1 are not highly accurate.

Example 1. Model Updating using Incomplete Measured Data
Consider the positive semidefinite model (M, D, K) where D = 0 and

matrices M and K are given by

M =













1.2940 0. 0. 0. 0.

0. 1.2940 0. 0. 0.

0. 0. 1.2940 0. 0.

0. 0. 0. 1.2940 0.

0. 0. 0. 0. 0.













K =













1188.5000 196.6000 0. 0. −642.4000
196.6000 626.3000 0. −555.6000 0.

0. 0. 1188.5000 −196.6000 −546.1000
0. −555.6000 −196.6000 626.3000 196.6000

−642.4000 0. −546.1000 196.6000 4019.1000













This model has two infinite eigenvalues.

Step 1. The matrices of measured frequencies and mode shapes are taken
as:

Σ2
1 =

[

−23.5500
−990.0800

]

, Y11 =

[

0.3000 1.2000
0.3500 −1.1300

]

.

The corresponding modal matrices are:

Λ2
1 =

[

−23.6929
−991.1000

]

, X1













0.2045 −0.5069
−1. −0.9986

−0.1403 −0.7470
−0.9997 1
0.0625 −0.2314













.

Also, note that

Λ2
2 =

[

−702.3357
−943.6921

]

, X2 =













−1. 1.

0.5775 0.2627
−0.9602 −0.9325
−0.6475 0.0726
−0.2586 0.0296













.
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Step 2. From the QR factorization of MX1:

U1 =













−0.1424 −0.3023
0.6966 −0.5955
0.0977 −0.4455
0.6964 0.5963

0. 0.













, U2 =













−0.1668 0.9276 0.

−0.3696 −0.1536 0.

0.8895 0.0298 0.

0.2108 0.3392 0.

0. 0. 1.













and

Z =

[

−1.8576 0
0 2.1700

]

.

Step 3. The partition of matrices M and K is straightforward.
Step 4. The solution of the descriptor Sylvester equation is

Y12 =





0.3662 0.6685
−0.6942 −3.8523
0.1317 0.4711



 .

Step 5. Computing the LDLT factorization and updating Y1:

L =

[

1 0
3.4804 1

]

, J =

[

1.0722 0
0 10.3107

]

, Y1 =













0.3000 0.1559
0.3500 −2.3481
0.3662 −0.6061
−0.6942 −1.4362
0.1317 0.0128













.

Step 6. The symmetric matrix Ψ is

Ψ =

[

−335.7777 −80.9068
−80.9068 246.3905

]

.

Step 7. The updated stiffness matrix is:

K̃ =









1077.9001 −86.2129 −183.4235 190.5648 −642.4000
−86.2129 1047.6955 −108.7290 418.2325 0.

−183.4235 −108.7290 997.7215 504.7781 196.6000
−642.4000 0. −546.1000 196.6000 4019.1000









.

Verification:

||MY1Σ
2
1 + K̃Y1||F = 3.1607× 10−13,

||MX2Λ
2
2 + K̃X2||F = 2.4177× 10−12.

Therefore, we conclude that

• The incomplete measured data was entirely and accurately incorporated
in the new model.

• The unmeasured frequencies and mode shapes did not change, and there-
fore the update did not produce spill-over.
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Model updating by eigenvalue embedding

The eigenvalue embedding is a process of embedding a set of measured
eigenvalues in a symmetric FEM in such a way the updated model is still
symmetric and the other eigenvalues and eigenvectors of the original model do
not change. Thus, an eigenvalue embedding method solves the model updating
problem in the case when the measured eigenvectors are not considered for
updating.

Two eigenvalue embedding methods have been proposed so far in the liter-
ature: a method by Ferng, Lin, Pierce and Wang [11] using theory of nonequiv-
alence transformation of matrix polynomials, and a method by the author and
collaborators [4]. The first paper considers updating of a slightly more general
model that arises in the construction of aircraft structure model for dynamic
load analysis, but unfortunately, the symmetry of the model is not preserved.
Ours is a symmetry preserving method. We state below our method in a sim-
ple form that assigns just one isolated real eigenvalue. However, embedding
a pair of complex eigenvalues and simultaneously embedding a group of real
eigenvalues can also be done, and the relevant algorithms and theory appear
in [4].

Algorithm 2. Algorithm for model updating by eigenvalue embedding

Given the symmetric positive definite FEM (M, D, K), a finite element
generated real eigenpairs (λ1, y1), and a measured eigenvalue µ1 such that

yT
1 Ky1 = 1, 1 − λ1µ1(y

T
1 My1) 6= 0, 1 − λ2

1(y
T
1 My1) 6= 0.

Step 1. Compute

θ1 = yT
1 My1, ε1 =

λ1 − µ1

1 − λ1µ1θ1
.

Step 2. Form the symmetric rank-one updates:

MU = M − ε1λ1My1y
T
1 M, KU = K −

ε1

λ1
Ky1y

T
1 K,

CU = C + ε1(My1y
T
1 K + Ky1y

T
1 M).

Theorem 2. (Symmetric eigenvalue embedding). The updated pencil PU (λ) =
λ2MU + KU + CU is symmetric and has the following properties:

(i) The number µ1 is an eigenvalue of PU (λ),
(ii) (λk , xk), k = 2, ..., 2n are also the eigenpairs of PU (λ).

3.2. New Results on QPEVAP, and QPESAP, and QRPEVAP

In this section, we present our direct and partial-modal which of the PQEAP.
It is direct in the sense that the solution is obtained directly in the quadratic
setting without any a priori transformation to a first-order problem. It is
partial-modal, since it requires knowledge only those small number of reso-
nant eigenvalues and the corresponding eigenvector. The other distinguished
features of this algorithm include:
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(i) computational requirements are minimal,
(ii) the structures of the mass, stiffness, and damping matrices can be

exploited in the computational setting and furthermore, no a priori model
reduction is necessary.

Above all, the no spill-over property is guaranteed with a mathematical
result. Similar result exists for QPEASP [24]. The above features make the
algorithms practical even for very large and sparse problems.

4. Notations

Ω(P (λ)) is spectrum of P (λ) = {λ1, ..., λp; λp+1, ..., λ2n}, X the right eigen-
vector matrix of P (λ), Y the left eigenvector matrix of P (λ), AH Her-
mitian conjugate of A, Λ1 = diag (λ1, ..., λp), Λ2 = diag (λpH , ..., λ2n),
Y1 = (y1, y2, ..., yp), the left eigenvector matrix of P (λ) associated with
λ1, ..., λp.

Algorithm: An Algorithm for QPEAP

Assumptions:
(i) {λ1, ..., λp} is self-conjugate.
(ii) {λ1, ..., λp} ∩ {λp+1, ..., λ2n} = 0.
(iii) (P (λ), B) is partially controllable with respect to {λ1, ..., λp}.

Theorem 3. Let the above assumptions hold and let Φ be any arbitrary
matrix. (a) Then the matrices F1 and F2 defined by F1 = ΦY H

1 M and
F2 = Φ(Λ1Y

H
1 M + Y H

1 C) are such that 2n− p eigenvalues {λp+1, . . . , λ2n} of
the closed-loop pencil Pc(λ) remain unchanged, (b) If Φ in part (a) is chosen
solving the p × p linear system QZ1 = Γ , where Γ is arbitrary and Z1 is the
unique solution of the sylvester equation

Λ1Z1 − Z1Λcl = Y H
1 BΓ,

then F1 and F2 defined in Part (a) will solve the QPEAP.

Algorithm 3. An Algorithm for QPEAP:
Given M, C, K, Λ, Y1 and Λcl (as defined above) the following algorithm,

under the above assumptions, compute F1 and F2 that solve the QPEAP.

Step 1. Choose Γ arbitrary and solve the p × p Sylvester equation for Z1 :

Λ1Z1 − Z1Λcl = Y H
1 BΓ.

Step 2. Solve the p × p linear algebraic system for

Z1 : ΦZ1 = Γ.

Step 3. Compute F1 and F2 as defined above.
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We note that
(a) The existence of the unique solution Z1 in step 1 is guaranteed by

assuming that {λ1, . . . , λp} and {µ1, . . . , µp} are disjoint. The assumption is
practical because, it does not make any sense to reassign an eigenvalue which
is undesirable.

(b) The assumption (ii) implies the existence of Z1.

5. Conclusion

A brief account of some of the recently developed new algorithms for three
important practical inverse eigenvalue problems, namely Quadratic Partial
Eigenvalue Assignment and Eigenstructure Assignment, and Finite Element
Model Updating problems arising in vibration and control engineering are
presented here. The direct and partial modal nature and minimal compu-
tational requirements of these algorithms make them attractive for practical
applications even when the structures are very large. It is hoped that these
results will provide much incentive for researchers in vibration engineering to
solve many other vibration control problems in a practical way. It is noted
in this context that research in vibration engineering still lags other areas of
control and much remains to be done.
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