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Abstract. We investigate flow problems of relevance in bioremediation and de-
velop a mathematical model for ground water transport of contamination (e.g. bio-
logical or chemical waste), and its remediation. Particular emphasis is placed on the
study of processes involving the full coupling of reaction, transport and mechanical
effects. Dimensionless analysis and asymptotic simplification are used to simplify the
governing equations, which are then solved numerically. In addition we use matched
asymptotic techniques to test the accuracy of the numerical simulations in the limit
of large Péc let number.
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1. Introduction

When a contaminant is released into the subsurface environment, it percolates
downwards and horizontally into aquifers due to gravity forces and dispersion
[1]. In this paper we consider an in-situ remediation strategy applied to a
one dimensional transport of contaminant in a phreatic aquifer with varying
groundwater velocity. We assume only one microbial population is involved in
the biodegradation process and we ignore the effects of intermediate products.

First we consider groundwater flow where the flow rate is proportional
to the pressure gradient as given by Darcy’s law. Dimensional analysis and
asymptotic simplification are used to simplify the governing equations, which
are then solved numerically. Secondly, we incorporate the flow velocity into the
biodegradation equations. Small pore clogging effects are included by express-
ing the volumetric liquid fraction 6, as a linear function of biomass concentra-
tion m* but the full effects of coupling with the flow problem are neglected.
In all the computations, the accuracy of the numerical simulations is tested
by obtaining approximate solutions in the limit of large Péclet number. We
use experimental parameter values from MacQuarrie et al. [3].



66 M. Chapwanya and S.B.G. O’Brien

2. Governing Flow Model

The aquifer is assumed to be very long compared to its initial height hg, i.e.
ho < £, [2]. £ is the horizontal length scale of the aquifer. The phreatic aquifer
has the water table as its upper boundary and from a mathematical point of
view, this is a free boundary (see Fig.1).
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Figure 1. Porous medium boundaries and the free surface of the model problem

In the porous medium we apply Darcy’s law which relates the flow velocity

*

u* = (u*,v*) to the applied pressure gradient. Assuming an incompressible
flow through a rigid porous medium, we have a pressure distribution gov-
erned by the Laplace’s equation: V*?p* = 0 where the asterisk indicates a
dimensional variable.

2.1. Dimensionless Model
The dimensionless problem is governed by:
U= —py, vV=-py—1, Dyy+ 6P =0, (2.1)
where the boundary conditions are given by the following expressions:
py=—1 ony=0, (2.2)
p=0, 6%h;= —py — 1 +8%pyh, ony=h,
p=(1-y) onz=0,
p=0 onz=1.

where ¢ = ho/¢. If § < 1, then we find the solution to (2.1) as an expansion
of the form p = po + §%py + 6*pa + . ... The leading order approximation for p
is found to be p ~ h — y which fails to satisfy condition at x = 1, unless there
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is no seepage face. Thus we will also seek a solution for h as an expansion of
the form: h = hy + 6%ho + .. ..

In the case of phreatic flow, the phreatic surface always terminates at a
point below the water table of the body of open water present outside the flow
domain. This region (D in Fig.1), is known as the seepage face. The Dupuit
approximation cannot be applied to regions where vertical flow cannot be
neglected such as at the seepage face. Using the Dupuit approximation the
free surface can be found to be h = (1 — z)'/2. In fact the flux will be found
to be infinite at « = 1, this is corrected by insertion of a boundary layer.

2.1.1. Numerical Strategy

The numerical strategy involves finding an expression for the free surface
y = hi(x). We choose an initial guess for the free surface. At the free boundary
we use u - i = 0. If the free surface boundary condition does not satisfy p = 0,
we shift the surface to a new position and solve the problem with a new free
surface. The procedure is terminated if the conditions, u-fi = 0 and p = 0
are both satisfied simultaneously.

*  Numerical solution
- - Polynomial interpolation
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Figure 2. Numerical solutions: a) numerical solution for the phreatic surface y =
hi(z), height of seepage face is y = 0.05, b) velocity in the horizontal direction.

It can be deduced from (2.1) and (2.2) that: u ~ —hi, and v = 6%yh1,,
which relates the velocity to the location of the free surface. Fig.2 shows the
free surface and velocity in the x direction.

3. Bioremediation Model

We now consider the transport equations following Molz et al. (1986) [4]
and Odencrantz et al. (1993) [5], for the degradation of the pollutant s* by
biomass m* and consumption of the nutrient a*. For the purpose of devel-
oping a numerical algorithm, we reformulate the model equations and put:
S* = 6ps*, A* = 6,0 and M* = m*.
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3.1. Dimensionless model

When the contaminant enters the saturated aquifer, a plume will develop
spreading in all directions. For the purposes of investigating the progress of
the concentration profiles in the x direction we assume that the aquifer is suf-
ficiently narrow that the concentrations in the y direction are approximately
constant (smoothed via diffusion effects). We thus consider concentrations
S(x,t), A(x,t) and M (x,t).

Hence we obtain the reduced dimensionless system of equations:

a8 oS 1 0 oS

ng = —U% + P—GL% (GZ%H—Z) — )\lr(fat)a (313)
0A 0A 1 0 0 A
E = _U% + P—eL% <9€%0_£> - >‘2T(xat)7 (Slb)
68—]\5' = —>\4(M — ].) + )\3T(x,t)7 (31C)

where r(x,t) is the double Monod kinetics term. Initially we have a pollutant
and nutrient free porous medium with a constant indigenous biomass concen-
tration. The boundary conditions are: S(0,t) = sof; and A(0,t) = aof. Also
the flux at the outflow boundary is zero.

3.1.1. The liquid fraction

We adopt the macroscopic approach. The volumetric fraction of the liquid
phase in the medium is:

0p =n—Kkm (3.2)

where £ is the ratio of initial biomass mass per unit volume of the porous
medium and the density of biomass and n = 1 — 0, is the constant medium
porosity neglecting the presence of the microbes. Thus (3.2) assumes all
biomass responsible for degradation is attached to the soil matrix.

4. Asymptotics based on Kk K 1

Consider a model where 4 < 1: i.e. there is little clogging due to biomass
growth. We look for solutions to (3.1) as expansions of the form:

S:¢0+IA<;(]51+---, Azl/JQ—l—lA{wl—f—---, M:w0+/%w1+---(4.1)

so that 0, = n — kwo — &2w1 + - - -.
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4.1. O(1) equations

The leading order governing equations are given by:

lon) 0o %o

RSE = —U% + 6W - )\17‘0(33,'0, (423)
5’@/10 o % 621/10
= +e 92 A2ro(z, 1), (4.2b)
0
% = —A4(w0 - 1) + /\37‘0(33, t)7 (42C)

where e = 1/Pey, and

w bo Yo
0Ks+¢0 Ka'“ﬁo’

ro(z,t) = (4.3)
with inlet boundary conditions 5%(0, t) = u(¢o —n), E%(O7 t) = u(yo —n),

9%0(1,4) = 0, %2(1,¢) = 0 and initial conditions ¢o(z,0) = 0, o(z,0) =
0, wo(x,0) = 1.
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Figure 3. The numerical solution (solid curves) and the asymptotic solution
(dashed curves).

We check the accuracy of our numerical solution by obtaining approximate
solutions in the limit of large Peclet number, Pej, = 1/e > 1, choosing realistic
distinguished limits where A; = O(y/€). The solution to (3.1) is obtained in
the form: s(z,t) = ¢o/n, a(z,t) = o/n and m(x,t) = wy. The approximate
analytical solutions are:

s(z,t) = % (1 —erf [&\/g&\/% ) , (4.4a)
a(z,t) = % <1 —erf [x_—\/g“t %D (4.4b)
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bos(a,t) a(x,t)

=1
m(z,t) =1+ Az o Ko+ s(z,t) Ko + a(z,t)

(4.5)

Fig.3 is a plot of the asymptotic solution and the numerical solution for dif-
ferent values of e. The width of the shock layer is of O(y/¢). The sharpening
of the shock layer as € decreases is evident in the figures.

The O(%) equations can only be solved numerically.

5. Summary and Conclusion

In this paper we developed an analytical and numerical approach to approxi-
mate an in situ bioremediation of a contaminated phreatic aquifer. The mathe-
matical derivation of the flow velocity involved an assumption that the aquifer
is thin and long. This assumption and dimensional analysis helped us re-
duce the two dimensional problem to a one dimensional problem. Excessive
biomass concentration near the entrance boundary motivated us to express
the medium porosity as a function of biomass concentration assuming that all
biomass grows in colonies attached to soil particles.

In the above model, the pore clogging is assumed to be small. A model
fully incorporating finite pore clogging, and the actual mechanism of pore
clogging is currently under development.
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