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Abstract. Isotropic processes form an inadequate basis in modelling many spa-
tially distributed data. In particular environmental phenomena often have strong
anisotropic spatial variation, especially when the regions monitored are very large
(see [1]). Among different forms of spatial anisotropy a geometric anisotropy is most
common (see [4]). Geometric anisotropy, which provides the most common genera-
tion of isotropy within stationarity, is typically dealt with by simple transformations
of coordinates. For modelling spatial processes, we propose a rich class of stationary
geometric anisotropic variograms.

Objective of our investigation is to select and identify optimal models of isotropic
variograms for different direction regions, using R, a system for statistical computa-
tion and graphics [2]. Spatial data was used for realization of the proposed modelling
procedure. General form of geometric anisotropic semivariogram for salinity data was
obtained.
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1. Introduction

Spatially independent data show the same variability regardless of the lo-
cation of data points. However, spatial data in most cases are not spatially
independent. Data values, which are close spatially, show stronger correlation
than data values, which are farther away from each other.

The traditional measurement of spatial correlation is the semivariogram,
commonly called the variogram. For spatial locations

{

si : si ∈ D ⊂ Rd
}

in
a region D, suppose we observe responses Z(si), i = 1, ..., N , where Z =

(Z(s1), Z(s2), ..., Z(sN )́) is viewed as a single observation from a random field.
Under the intrinsic hypothesis of Matérn (1963) we have:

E(Z(s1) − Z(s2)) = 0, V ar(Z(s1) − Z(s2)) = 2γ(s1 − s2) = 2γ(h), (1.1)
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where h = s1 − s2 is separation vector, 2γ(h) is called the variogram and
γ(h) is the semivariogram. A stronger assumption is that the process Z(s) is
a second-order or weakly stationary, i.e.:

E(Z(s)) = µ and Cov(Z(s1), Z(s2)) = C(s1 − s2) = C(h) < ∞. (1.2)

Classical semivariogram has the following shape as shown in Figure 1. Range
(Θ2) is the distance at which the semivariogram becomes a constant.

Figure 1. Semivariogram representa-
tion.

Figure 2. Geometric anisotropy.

If lim|h|→∞ γ(|h|) = γ∞ < ∞, then γ∞ is called sill of semivariogram. The
nugget effect shows the pure random variation in population density or it may
be associated with sampling error. If γ(|h|) → Θ0 > 0 when |h| → 0 , then Θ0

is called the nugget effect [3].

A semivariogram is anisotropic if it changes in some way with respect to
direction. If value of semivariogram depends only on length of vector h, then
we have isotropic semivariogram. If value of semivariogram depends not only
on length of vector h, but depends also on direction of vector then we have
anisotropic semivariogram.

Semivariogram modeling is the foundation for geostatistical analysis – in
order to apply kriging to a data set it is necessary to model the variogram.
Theoretical variogram models for kriging are based on isotropic models, so
correction for any anisotropies is necessary to use kriging methodology.

There are two types of anisotropy: geometric and zonal anisotropy. Ge-
ometric anisotropy occurs when the range, but not the sill, of the semivari-
ogram changes in different directions (see Figure 2). Zonal anisotropy exists
when sill of semivariogram change with direction. We shall focus on geometric
anisotropy.

Geometric anisotropy means that the correlation is stronger in one di-
rection than it is in the other directions. Mathematically, if one plots the
directional ranges, in two dimensions they would fall on the edge of an ellipse
(see Figure 3a) and in three-dimensional case they would fall on the surface of
an ellipsoid (see Figure 3b), where major and minor axes of ellipse/ellipsoid
correspond to the largest and shortest ranges of directional semivariograms.
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a) b)

Figure 3. Directional ranges: a) two-dimensional case, b) three-dimensional case.

One way in which geometric anisotropy can be identified is by calcu-
lating and plotting experimental directional semivariograms. Differences in
sample variograms computed using different angles could be an indication of
anisotropy.

Geometric anisotropy can be modeled by changing the variogram model
for an isotropic process transforming the coordinates

γ(si − sj) = γ(‖A(si − sj)‖),

where A is transformation matrix. The basic procedure consists of 4 steps.
We are going to describe two-dimensional and three-dimensional cases.

Two-dimensional case

First step is to identify axes of anisotropy. They can be detected generating a
focused experimental variogram in several different directions and observing
whether or not there are significant differences in the resulting variograms.
Usually we study angles (ϕ) of 0o, 45o, 90o, and 135o with tolerance angle
ε = 45o . Then each angle group (αi) is defined as ϕ − ε

2 < αi < ϕ + ε
2 [3]. If

anisotropy exists, the ranges or sills of the two variograms will differ.

Once anisotropy has been detected the second step is to rotate data axes
to match axes of anisotropy. This can be done using rotation matrix

R =

(

cos(ϕ) sin(ϕ)
sin(ϕ) cos(ϕ)

)

,

where ϕ is an angle from y (North direction) to the major axis of ellipse.

Third step is reduction directional variograms to a single variogram with
standardizes range of 1. Distance transformation can be represented as matrix

T =

(

1/amax 0

0 1/amin

)

. (1.3)
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where amax is major range of anisotropy ellipse, amin is minor range of
anisotropy ellipse.

Finally we need to combine these rotation and distance scaling transfor-
mation matrixes and we get transformation matrix A = TR.

So overall model is

γ(si − sj) = γ(‖TR(si − sj)‖). (1.4)

Three dimensional case

A semivariogram structure with geometric anisotropy in a 3-D space corre-
sponds to a tri-axial ellipsoid (see Figure 3b). Procedure of identification of
anisotropy axes is the same as in two dimensional case.

Six parameters are needed to specify the ellipsoid: three ranges (a1, a2, a3)
and three rotation angles to quantify orientation in a coordinate system.With
these six parameters we can transform an anisotropic variogram structure into
an isotropic one. Anisotropic variogram structure appears as an ellipsoid, after
the change of coordinates it becomes a unit sphere.

Each rotation rotates a plane formed by two coordinates about the third
coordinate by some angle. Each rotation has its own rotation matrix, so final
rotation matrix R can be combined as follows

R=

[

cos ϕ2 cos ϕ1 cos ϕ2 sin ϕ1 − sin ϕ2

− cos ϕ3 sin ϕ1 + sin ϕ3 sin ϕ2 cos ϕ1 cos ϕ3 cos ϕ1 + sin ϕ3 sin ϕ2 sin ϕ1 sin ϕ3 cos ϕ2

sin ϕ3 sin ϕ1 + cos ϕ3 sin ϕ2 cos ϕ1 − sin ϕ3 cos ϕ1 + cos ϕ3 sin ϕ2 sin ϕ1 cos ϕ3 cos ϕ2

]

,

where ϕ1 is the first rotation angle, ϕ2 the second rotation angle, ϕ3 the third
rotation angle.

Rescaling. This step rescales the coordinate system X Y Z and reduces
the ellipsoid into a unit sphere in the final coordinate system J K L. Lets
define the radii of the ellipsoid variogram structure along major, second-major,
and minor axes as a1, a2, a3 respectively. The rescaling is simply done by
multiplying the following scaling matrix:

T =





1
a1

0 0

0 1
a2

0

0 0 1
a3



 . (1.5)

The transformation matrix, which transforms the original coordinate system
into the final coordinate system, is: AJKL←XY Z = TR.

2. An Example: Data from Coastal Zone of Baltic Sea

Salinity data, which was collected in coastal zone of Baltic Sea, was used in this
article. All computations have been done with package Gstat, which is part of
R – language and environment for statistical computing and graphics. Package
Gstat is designed for multivariable geostatistical modelling, prediction and
simulation. R is free software, so it is available for wide audience.
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We used some functions for generating variogram model, for calculating
sample or residual variogram, for plotting a sample variogram, for fitting a
variogram model to a sample variogram. For example, function

Vgm(sill, model, range, nugget, anis)

generates variogram model. Argument Anis is anisotropy parameter, which
defines ratio between the minor range and the major range and it is called
anisotropy ratio. Function

Variogram(y, locations, X, cutoff, width, alpha,beta, tol.hor, tol.ver)

allows to define direction in plane (x, y) (argument alpha), direction in z
(argument beta), horizontal and vertical tolerance angles (arguments tol.hor,
tol.ver).

First of all we detected axes of anisotropy and decided what type of
anisotropy we have. We calculated variograms for many directions (with tol-
erance angle), fitted parametric anisotropic spherical model to a pointwise
nonparametric semivariogram estimator:

γ(|h|) =
1

2N(|h|)
(z(s) − z(s + h))2 (2.1)

and were looking for differences between sills and ranges. In our investigation
we found out that sills are nearly the same, but ranges differs a lot (see
Table 1). Largest range (13786,61 m.) was obtained in Northeast direction
and it represents the major axis of ellipse, the shortest range (2097,15m.) was
obtained in perpendicular direction, in Southeast and it represents the minor
axis of ellipse. So we come to a conclusion, that in this case we have geometric
anisotropy.

Table 1. Parameters of directional semivariograms.

Direction(alpha) Sill Range

North(0o) 0.081 2097,15
NorthEast(45o) 0.083 13786,61
East(90o) 0.085 5663,74
SouthEast(135o) 0.082 2097,15

After fitting semivariogram equation in major axis direction (Northeast)
is given as

γ(|h|) = 0, 08

(

3|h|

2 · 13786, 61
−

1

2

(

|h|

13786, 61

)3
)

. (2.2)

Semivariogram equation in minor axis direction (Southeast) is
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γ(|h|) = 0, 08

(

3|h|

2 · 2097, 15
−

1

2

(

|h|

2097, 15

)3
)

. (2.3)

Graphical representations of these functions are presented in Figure 4 a,b.

a) b)

Figure 4. Graphics of semivariograms: a) Northeast direction; b) Southeast direc-
tion.

General model of semivariogram with geometric anisotropy can be written
in the following form:

γ(|h|) = γ(r, β) = Θ1

(

3|h|

2Θ2(β)
−

1

2

(

|h|

Θ2(β)

)3
)

, (2.4)

where β is argument of h, r is length of h, Θ1 is sill, which is common in case
of geometric anisotropy,

Θ2(β) = ax

√

1

cos2(ϕ − β)k2 + sin2(ϕ − β)

is a range, which depends on angle β , ax is minor axis of anisotropy ellipse, ay

is major axis of anisotropy ellipse, ϕ is angle from y to the principal direction,
k = ax

ay

< 1 anisotropy ratio.

Anisotropic semivariogram model in our case is given by

γ(|h|) = γ(r, β) = Θ1

(

3|h|

2Θ2(β)
−

1

2

(

|h|

Θ2(β)

)3
)

,

where Θ2(β) = 2097, 15
√

1
cos2(π

4
−β)0,152+sin2( π

4
−β)

.
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