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Abstract. In this paper new iterative relaxation method for solution of elliptic
problems is proposed. The method converges with logarithmic rate and outperforms
many known iterative methods. It was successfully applied to one-, two- and three-
dimensional elliptic problems.
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1. Introduction

Let us consider elliptic PDE with R – dimensional positively definite operator,
which is the sum of one-dimensional commutative operators:

L (x) u + f (x) = 0, L (x) =

R
∑

r=1

Lr (xr). (1.1)

Let us introduce multidimensional orthogonal grid and write a finite-difference
approximation of this equation:

Λu ≡
R

∑

r=1

Λru = f (1.2)

If R ≥ 2 then it is difficult to solve this equation by direct methods. The most
reliable iterative methods are the explicit iterative algorithm with Chebyshev’s
set of parameters and Conjugate Gradient method [3]. But for these methods
(when preconditioning matrix is not used) the number of iterations
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K ∼ µ =
√

λmax/λmin,

where λmin and λmax are the bounds of the spectrum of matrix Λ. For simple
elliptic PDE the stiffness number λmax/λmin ∼ N2

r , where Nr is a number
of grid points per one space direction. So applied numerical problems require
K ≈ 1000 iterations. It is too large computational cost for many real world
applications.

In this paper we introduce a new iterative method, which applies the
relaxation method for the implicit time-factorized scheme. It is proved that
for this method the number of iterations K ∼ ln (λmax/λmin). Thus it is one
of fastest known iterative method, comparable with multigrid methods.

2. Relaxation Method

Elliptic PDE (1.1) is often solved with the relaxation method [3]. Let us
consider the evolutionary problem with the same discrete spatial operator:

du

dt
= Λu + f, Λ =

R
∑

r=1

Λr, (2.1)

a stationary limit of which gives the solution of (1.2). For solving the system
of ODEs (2.1) we use the following time-factorized scheme [1]:

R
∏

r=1

(

E − τ

2
Λr

) û − u

τ
=Λu − f. (2.2)

It is simple, reliable and in the case of two spatial dimensions it is identical to
the Peaceman-Rachford scheme [2]. The number of iterations which is required
to solve the stationary problem (1.2) with the time-factorized scheme depends
on the set of time steps (or iterative parameters) used in computations.

3. The Optimal Step

The stability functions of the time-factorized scheme (2.2) in one- and two-
dimensions are defined as follow:

ρ =
1 − τλ

2

1 + τλ
2

, R = 1; ρ =
1 − τλ1

2

1 + τλ1

2

1− τλ2

2

1 + τλ2

2

, R = 2. (3.1)

They are monotonously decreasing functions of the argument τλ. Equating
its value for the lowest harmonic ρ (τλm) to the value of the highest harmonic
ρ (τλM ) we obtain the optimal constant step (the iterative parameter), which
leads to the minimal number of iterations.

Theorem 1. In 1D case the optimal constant time step is defined by τ0 =
2

√

λmλM
and the minimal number of iterations is K (τ0) = 1

2

√

λM

λm
ln 1

ε
, where

λm, λM are bounds of the spectrum of operator Λ.
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We note that one-dimensional case and Theorem 1 are considered only
as simple examples, since such problems can be solved efficiently by direct
methods. Similarly to one-dimensional case we can obtain the optimal con-
stant time step and corresponding number of iterations sufficient to decrease
the error of each component of the error function. The decomposition is done
by using eigenvectors of operator Λ. In two-dimensional case the following
theorem is valid:

Theorem 2. For two-dimensional problems the optimal time step is defined

by

τ0 = 2

√

λ1M + λ2M − λ1m − λ2m

λ1mλ1M (λ2M − λ2m) + λ2mλ2M (λ1M − λ1m)

≈ 2

√

λ1M + λ2M

λ1Mλ2M (λ1m + λ2m)

and the number of iterations is given by

K (τ0) = ln
1

ε
ln−1

(

1 + 1

2
τ0 (λ1m + λ2m)

1 − 1

2
τ0 (λ1m + λ2m)

)

.

Here we have supposed that λ1M , λ2M � λ1m, λ1m.

4. Quasi-Spectral Set of Steps

A constant optimal step used at each iteration does not allow to construct
the fast iterative method. So we need to use a set of such steps. For example
using the Chebyshev iterative parameters for the explicit iterative algorithm
one obtains the same accuracy with much smaller number of iterations. In
one-dimensional case the following theorem gives the set of steps for the time-
factorized scheme, which guarantees the logarithmic convergence speed.

Theorem 3. Let decompose the error function in the basis of eigenvectors of

operator Λ. In order to decrease every component of error at least 1/ε times

it is sufficient to do

K ≥ ln
1

ε
ln

√

λM

λm

(4.1)

iterations and to use the following set of iterative parameters {τk, 0 ≤ k ≤ K}

τk =
2

λm

(

λm

λM

)
k
K

, 0 ≤ k ≤ K (4.2)

In applied computations ε has the same order as the accuracy of solving
the linear system of equations. In R-dimensional case

λm = min
r

λr min, λM = max
r

λr max.

The following statement holds.
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Figure 1. Envelop of the extremum absolute values of the stability function for the
time-factorized scheme (2.2).

Theorem 4. In two-dimensional case the quasi-spectral set of steps (4.2) also

provides logarithmic convergence rate and it is sufficient to do only half num-

ber of iterations defined by (4.1).

The proof of both theorems is based on the representation of the stability
function after K steps in the form

ρK (ξ) =

K
∏

k=1

th (ξ − ηk), ξ ∈
[

ln
√

λm, ln
√

λM

]

and the inequality thx < e−2e−2x

. This inequality gives us a possibility to
estimate the stability function and at the same time to replace product
K
∏

k=1

th (ξ − ηk) by geometric series. For three-dimensional case there is no such

strict theoretical result, but practical calculations show that the convergence
rate remains logarithmic. This is due to the fact that stability function is much
more complex in three-dimensional case and it explains why the theoretical
line in Fig. 1 lies below the line defined by computational examples. Also we
tried to improve the method and studied other sets of steps. Fig. 1 illustrates
the envelop of the extremum absolute values of the stability function for the
time-factorized scheme (2.2).

The curve 1 corresponds to the quasi-spectral set of steps (4.2), curve 2 –
to the quasi-Chebyshev set of iterative parameters

τk =
2√

λmλM

(

λm

λM

)
1
2 cos

π(k−1/2)
K

, 1 ≤ k ≤ K. (4.3)

Slightly better results were obtained for the interpolation set of steps (see
curve 3)
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τk =
2

λm

(

λm

λM

)

1+zk
2

, zk = θk

(

1 +
(

1 − θ2

k

)

/ (2b)
)b

,

b =

(

1 +
1

8
ln2

(

λM

λm

))

−1

, θk =
2k

K
− 1, 0 ≤ k ≤ K.

but the performance gain is insignificant.

Figure 2. Number of steps K depending on the grid nodes per one space direction
in logarithmic scale.

5. Practical Computations

This method was successfully applied to solve the typical 1,2,3-dimensional
heat conduction problems, which are typical examples of elliptic problems.
Fig. 2 illustrates the results of these computations. Curves 1,2,3 correspond
to the 1,2,3-dimensional cases accordingly. Thin lines represent the theoret-
ical estimations. Line with circles represents the computations in the two-
dimensional unbounded area. One can see that calculations in two- and three-
dimensional cases require less iterations than in one-dimension case. In all
cases the number of iterations K ∼ lg N therefore K ∼ lg

√

λM/λm.
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