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Abstract. This paper presents a two-dimensional-in-space mathematical model
of amperometric biosensors with perforated and selective membranes. The model is
based on the diffusion equations containing a nonlinear term of the Michaelis-Menten
enzymatic reaction. The problem was solved numerically using finite-difference tech-
nique. Using numerical simulation of the biosensors action, the influence of the ge-
ometry of the perforated membrane on the biosensor response was investigated.
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1. Introduction

A biosensor can be defined as a measuring device that contains a biological
entity. The enzyme in the biosensor recognizes the substrate to be measured
and specifically converts it into a product of the biochemical reaction [8]. The
amperometric biosensors measure the faradic current that arises on a working
indicator electrode by direct electrochemical oxidation or reduction of the
product. The amperometric biosensors are known to be reliable, cheap and
highly sensitive for environment, clinical and industrial purposes [3, 9].

1 The work was partially supported by Lithuanian State Science and Studies Foun-
dation, project No. C-03048.
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A practical biosensor contains a multilayer enzyme membrane [1, 8]. The
electrode acting as a transducer of the biosensor is covered by selective mem-
brane, following a layer of immobilized enzyme and an outer perforated mem-
brane.

To improve the productivity and efficiency of biosensors design as well
as to optimize the biosensors configuration a model of the real biosensors
should be build [6]. The modelling of biosensors with perforated membranes
has been performed by Schulmeister and Pfeiffer [7]. The model did not take
into account the geometry of the holes in the membranes and included the
diffusion coefficients having limited physical sense. The task of our investiga-
tion was to build a model approaching the practical amperometric biosensor.
By changing input parameters the output results were numerically analyzed
with special emphasis to the influence of enzyme and membranes parameters
to the response of biosensors at steady - state conditions.

2. Modelling Biosensor

We assume that the thickness of the selective membrane as well as of the
perforated membrane of a biosensor is much less than its length and width. In
the biosensor, the selective membrane is of the uniform thickness. The holes in
the perforated membrane were modelled by right cylinders. The holes are of
uniform diameter and spacing, forming a hexagonal pattern. Fig. 1a presents
the biosensor schematically.

The entire biosensor may be divided into equal hexagonal prisms with
regular hexagonal bases. For simplicity, it is reasonable to consider a circle
whose area equals to that of the hexagon and to regard one of the cylinders
as a unit cell of the biosensor.
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Figure 1. A principal structure of the biosensor and the profile of the unit cell at
Y-plane.

Fig. 1 b shows the profile of the unit of the biosensor, represented schema-
tically in Fig. 1 a. In Fig. 1 b, a2 is the radius of the base of the unit cell,
while a1 is the radius of the holes, a2 characterizes a density of the holes in the
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perforated membrane. b1 stands for the thickness of the selective membrane,
b3 − b2 is the thickness of the perforated membrane, b2 − b1 is the thickness of
the basic enzyme layer being between the selective and perforated membranes.
We also assume that holes are filled with the enzyme.

3. Mathematical Model

Let Ω1, Ω2 be open regions (see Fig. 1b) corresponding to the selective mem-
brane and enzyme regions, respectively, and Γ2 - the upper boundary of the
enzyme region,

Ω1 = (0, a2) × (0, b1), Γ2 = [0, a1] × {b3},

Ω2 = ((0, a2) × (b1, b2)) ∪ ((0, a1) × [b2, b3)) .

The biosensor action is described by the reaction - diffusion system (0 <
t ≤ T ),

∂P1

∂t
= D1∆P1, (r, z) ∈ Ω1, (3.1)

∂S

∂t
= D2∆S −

VmaxS

KM + S
, (r, z) ∈ Ω2, (3.2)

∂P2

∂t
= D2∆P2 +

VmaxS

KM + S
, (r, z) ∈ Ω2,

where ∆ is the Laplacian in cylindrical coordinates, S(r, z, t) is the concen-
tration of the substrate, Pi(r, z, t) is the concentration of the reaction product
in Ωi, Vmax is the maximal enzymatic rate, KM is the Michaelis constant, T
is full time of the biosensor operation, i = 1, 2.

Let Ωi be the closed region of the corresponding open region Ωi, i = 1, 2.
The initial conditions (t = 0) are as follows:

S(r, z, 0) = 0, (r, z) ∈ Ω2 \ Γ2,

S(r, z, 0) = S0, (r, z) ∈ Γ2,

Pi(r, z, 0) = 0, (r, z) ∈ Ωi, i = 1, 2.

The boundary and matching conditions (t > 0) are

P1(r, 0, t) = 0, r ∈ [0, a2], (3.3)

S(r, b3, t) = S0, P2(r, b3, t) = 0, r ∈ [0, a1], (3.4)

∂P1

∂r

∣

∣

∣

r=0

=
∂P1

∂r

∣

∣

∣

r=a2

= 0, z ∈ [0, b1],

∂S

∂r

∣

∣

∣

r=0

=
∂P2

∂r

∣

∣

∣

r=0

= 0, z ∈ [b1, b3],
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∂S

∂r

∣

∣

∣

r=a2

=
∂P2

∂r

∣

∣

∣

r=a2

= 0, z ∈ [b1, b2], (3.5)

∂S

∂r

∣

∣

∣

r=a1

=
∂P2

∂r

∣

∣

∣

r=a1

= 0, z ∈ [b2, b3], (3.6)

∂S

∂z

∣

∣

∣

z=b2

=
∂P2

∂z

∣

∣

∣

z=b2

= 0, r ∈ [a1, a2], (3.7)

∂S

∂z

∣

∣

∣

z=b1

= 0, D1

∂P1

∂z

∣

∣

∣

z=b1

= D2

∂P2

∂z

∣

∣

∣

z=b1

, r ∈ [0, a2], (3.8)

P1(r, b1, t) = P2(r, b1, t), r ∈ [0, a2], (3.9)

The measured current is accepted as a response of the biosensor. The
current depends upon the flux of the reaction product at the electrode surface,
i.e., at the border z = 0. The density i(t) of the current at time t can be
obtained explicitly from Faraday’s and Fick’s laws

i(t) = neFD1

1

πa2

2

∫

2π

0

∫ a2

0

∂P1

∂z

∣

∣

∣

∣

z=0

rdrdϕ, (3.10)

where ne is a number of electrons involved in a charge transfer, F is Faraday
constant and ϕ is the third cylindrical coordinate.

We assume, that the system (3.1)-(3.9) approaches an equilibrium or
steady - state when t → ∞, i∞ = lim

t→∞

i(t).

4. Solution of the Problem

Definite problems arise when solving analytically nonlinear partial differential
equations in domain of a complex geometry. Because of this the problem
(3.1)-(3.9) was solved numerically using the finite difference technique [4].

Using alternating direction method a semi-implicit linear finite difference
scheme has been built as a result of the difference approximation. The resulting
system of linear algebraic equations was solved efficiently because the matrix
of the system is tridiagonal.

In the digital simulation, the main problem is an overload of calculation
due to the boundary conditions and permissible conditions: a1 � a2 and
b2 � b3. To have an accurate and stable result it was required to use very
small step size in z direction at the boundaries z = 0 and z = b3. Because
of the concavity of an angle at the point (a1, b2) we used very small step size
in both space directions: r and z at the boundaries r = a1 and z = b3. Due
to the matching conditions (3.8), (3.9), we used also small step size at the
boundary z = b1. We assume, that farther from all these peculiar boundaries,
step size may increase in both space directions: r and z. Consequently, in the
direction r, an exponentially increasing step size was used to both sides from
a1: to a2 and to 0. In the direction z, an exponentially increasing step size
was used form 0 to b1/2, from b1 down to b1/2, from b1 to (b1 + b2)/2, from b2

down to (b1 + b2)/2, from b2 to (b2 + b3)/2, and from b3 down to (b2 + b3)/2.
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The step size in the direction of time is restricted due to the non-linear re-
action term in (3.2), boundary conditions and the geometry of the domain. In
order to achieve accurate and stable solution of the problem, at the beginning
of the reaction-diffusion process we employed the restriction condition, which
is usually used for fully explicit schemes. Since the biosensor action obeys the
steady-state assumption when t → ∞, it is reasonable to apply an increas-
ing step size in the time direction. The final step size was in a few orders of
magnitude higher than the fist one.

5. Results and Discussion

Using computer simulation we have investigated the dependence of the steady-
state biosensor current on the geometry of the membrane perforation. The
radius a1 of the holes was expressed through the radius a2 of the unit cell,
a1 = (1 − θ)a2, and the biosensor response was calculated at various values
of a1 and a2. The dimensionless degree θ expresses the level of covering of
the surface of the perforated membrane. The case when θ = 0 (a1 = a2)
corresponds to a biosensor having no perforated membrane.

The biosensor current is very sensitive to changes of the maximal enzy-
matic rate Vmax and the substrate concentration S0 [2, 5, 8]. Because of this,
the steady - state current of the biosensor having perforated membrane upon
the enzyme layer was normalized with respect to the steady - state current of
the corresponding biosensor having no perforated membrane,

iN (θ) =
i∞(θ)

i∞(0)
, θ = 1 −

a1

a2

, 0 ≤ θ ≤ 1. (5.1)

Results of calculations are depicted in Fig. 2.
One can see in Fig. 2, the behaviour of the biosensor response significantly

depends on the enzymatic activity Vmax. At low enzymatic activity (Vmax

= 10−9 mol/cm3s) the steady - state current of the biosensor having perfo-
rated membrane can generate the steady - state current which is more than 10
times higher than the current if the biosensor would be without the perforated
membrane (θ = 0). This feature of biosensors with perforated and selective
membranes can be applied in design of novel highly sensitive biosensors. Se-
lecting the geometry of perforated membrane allows increasing the sensitivity
of the biosensors.

The parameter a2 characterizes a density of the holes in the perforated
membrane. Fig. 2 shows, that the absolute values of the radius a1 of holes as
well as the half-distance a2 between adjacent holes have only weak influence
on the biosensor response. The biosensor current depends mainly on the join
factor θ of the geometry of perforation.

6. Conclusions

The mathematical model (3.1)-(3.9) of amperometric biosensors with perfo-
rated and selective membranes can be used to investigate the kinetic pecu-
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Figure 2. The normalized steady-state current iN versus the covering degree θ, a2

= 1 (1-4), a1 = 0.1 (5-8), b1 = 2, b2 = 4, b3 = 14 µm, S0: 100 (1, 2, 5, 6), 1 (3, 4, 7,
8) µM, Vmax: 1000 (1, 3, 5, 7), 1 (2, 4, 6, 8) µM/s, D1 = 1 µm2/s, D2 = 300 µm2/s,
KM = 100 µM, ne = 2.

liarities of the biosensor response. The computer simulation of the biosensors
can be used as a tool in design of novel highly sensitive biosensors.

The sensitivity of biosensors can be increased by selecting of the appro-
priate geometry of perforated membrane (Fig. 2). The level of the possible
increase of the sensitivity highly depends on the maximal enzymatic rate
Vmax. Significant gain in sensitivity can be achieved at low values of Vmax

only.
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