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Abstract. We consider the Dirichlet problem for a singularly perturbed reaction-
diffusion equation on the unit square. It is assumed that the coefficients of the
equation, its right-hand side and the boundary conditions on the sides of the square
are enough smooth functions. Any compatibility conditions in the corner points are
not assumed to be satisfied.

We introduce the piecewise uniform condensing Shishkin mesh in the domain.
For the numerical solution of the problem under consideration, we use a classical
five-point difference scheme on this mesh. We prove that the approximate solution ε-
uniformly converges at the rate O(N−2+δ) in the Lh

∞
-norm, where N is the number

of grid nodes in one direction and δ > 0 is arbitrary.
For the equation under consideration the best estimate O(N−2) is proved only

under assumptions on more high smoothness of the desired solution, namely u ∈

C4+λ(Ω) when additional compatibility conditions are satisfied. For the case of a
smoothness we use, the best of known to the author estimate is O(N−1/4).

Key words: singular perturbation, nonsmooth solution, uniform convergence

1. Introduction

We consider the Dirichlet problem for a singularly perturbed reaction-diffusion
equation

−ε2∆u+ q(x, y)u = f(x, y), (x, y) ∈ Ω, (1.1)

u = g(x, y), (x, y) ∈ ∂Ω ≡ Γ =
4

⋃

k=1

Γk, (1.2)

where ε ∈ (0, 1] is a small parameter, Ω is a unit square and Γk = Γ k are
its sides enumerated counter-clockwise from Γ1 = {(x, y) ∈ Γ |x = 0}. The
vertices of the square are enumerated in the same way from the vertex, which



208 V.B. Andreev

is in the origin of coordinates. We suppose the coefficient q(x, y) satisfies the
following condition

q(x, y) > α2 = const > 0. (1.3)

It is well known that for a small ε the solution of problem (1.1)-(1.3) has the
boundary layer along the whole boundary Γ . This causes certain difficulties
in numerical solving of this problem. Also it is known that presence of corner
points on the boundary of the domain (in our case they are the vertices of the
square) unfavorably affects on smoothness of the exact solution and therefore
makes worse an accuracy of the approximate solution.

Assume that the coefficient of equation (1.1) and its right-hand side belong
to the Hölder class C4,λ, 0 < λ < 1 on the closure Ω of the domain Ω

q(x, y), f(x, y) ∈ C4,λ(Ω). (1.4)

Assume as well that the restriction of the boundary function g(x, y) to the
sides of the square has appropriate smoothness

gk(s) := g(x, y)
∣

∣

Γ k
∈ C4,λ(Γ k), k = 1, 2, 3, 4. (1.5)

If it is true that
g(x, y) ∈ C(∂Ω), (1.6)

then it follows from (1.4), (1.5) that

u(x, y) ∈ C1,λ′

(Ω) ∩ C4,λ(Ω), (1.7)

where λ′ ∈ (0, 1) is an arbitrary number.

In order that the solution of problem (1.1)-(1.5) to be more smooth in Ω
than (1.7), it is necessary to impose so called compatibility conditions on the
coefficients and right-hand sides of the equation and the boundary conditions
at the corner points of the boundary.

In this work input data of problem (1.1)-(1.3) are assumed to satisfy con-
ditions (1.4)-(1.6) only. Any additional compatibility conditions at the corner

points are not assumed to be satisfied.

There is a wealth of literature on numerical methods for problem (1.1)-
(1.2). We shall concern methods, uniformly convergent with respect to ε in
Lh
∞-norm. We do not concern fitting schemes and one-dimensional problems.

In 1987 Shishkin [5] has considered problem (1.1)-(1.3) on the mesh of
Bakhvalov’s type [1] and, under assumption u ∈ C4,λ(Ω), proved the esti-
mate |uh

ij − u(xi, yj)| = O(N−2). For smoothness (1.7), in the same work the

estimate O(N−2/11) was proved.

In the book [6] Shishkin made use of piecewise uniform mesh (the Shishkin
mesh) for solving problem (1.1)-(1.3) and for sufficient smoothness of the solu-
tion he obtained the estimate O(N−1 lnN), and also, when the compatibility
conditions are absent, proved the estimate O((N−1 lnN)1/4).

In 2003 Shishkin [7] has considered problem (1.1)-(1.3) for u ∈ C4,λ(Ω)
on the piecewise uniform mesh with several points of change of mesh size and
obtained the estimate O(N−2(ln ln . . . lnN))2.
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In 2005 Clavero, Gracia and O’Riordan [2], for u ∈ C4,λ(Ω) on Shishkin
mesh, have obtained estimate O(N−2 ln2N).

It is impossible not to mention that Bakhvalov (1969), in [1] for rather dif-
ferent from (1.1) equation without compatibility conditions, has constructed
the approximate solution on his mesh, with accuracy of O(N−2).

2. Known Results

The following theorem takes place.

Theorem 1 [Volkov [8], Han-Kellogg [3]]. If conditions (1.4)–(1.6) are

fulfilled, then the solution of problem (1.1)-(1.3) admits the decomposition of

the form

u(x, y) =
4

∑

l=1

2
∑

k=1

al
kϕ

l
k(x, y) + w(x, y),

where w(x, y) ∈ C4,λ(Ω), and, for example,

ϕ1
k(x, y) = Im (ζ2k ln ζ) for εζ = x+ i y.

Vanishing of the coefficients al
k means fulfillment of the appropriate com-

patibility conditions. In particular, it follows from Theorem 1 that, for exam-
ple, in the neighbourhood of the vertex 1(the origin of coordinates)

∣

∣D4
xyu

∣

∣ 6 c (εr)−2, r =
√

x2 + y2. (2.1)

Theorem 2 [Clavero-Gracia-O’Riordan [2]]. If conditions (1.4)–(1.6) are

fulfilled, then the solution of problem (1.1)-(1.3) admits the following decom-

position

u(x, y) = U(x, y) +

4
∑

k=1

wk(x, y) +

4
∑

k=1

vk(x, y), (2.2)

where

LU = f, Lwk = 0, Lvk = 0, k = 1, 2, 3, 4,

besides, U(x, y) ∈ C4,λ(Ω) is a regular term of the solution, wk ∈ C4,λ(Ω)
are exponential boundary layer functions,

vk ∈ C1,λ′

(Ω) ∩ C4,λ(Ω \ neighborhood of the vertex k)

are corner layer functions.

Let us introduce the piecewise uniform Shishkin mesh in the domain Ω

Ω
h

= ω(xi) × ω(yj), (2.3)

where ω is a one-dimensional piecewise uniform mesh being condensed to the
ends of the segment [0, 1], which is defined as follows



210 V.B. Andreev

ω(si) = {si = ξ(i/N), i = 0, 1, . . . , N}, (2.4)

and

ξ(t) =











4σt, 0 6 t 6 1/4,

σ + 2(1 − 2σ)(t− 1/4), 1/4 6 t 6 3/4,

1 − 4σ(1 − t), 3/4 6 t 6 1,

σ = min

{

1

4
,
2ε

α
lnN

}

.

(2.5)

On the mesh Ω
h

we approximate problem (1.1)-(1.3) by a classical difference
scheme

Lhuh := −ε2(uh
x̄x̂ + uh

ȳŷ)ij + qiju
h
ij = fij , (xi, yj) ∈ Ωh := Ω

h
∩Ω,

uh
ij = g(xi, yj), (xi, yj) ∈ Γ h := Γ ∩Ω

h
.

(2.6)

The following representation takes place for the solution of problem (2.6)

uh
ij = Uh

ij +

4
∑

k=1

wh
k,ij +

4
∑

k=1

vh
k,ij , (xi, yj) ∈ Ω

h
, (2.7)

where
LhUh

ij = fij , Lhwh
k,ij = Lhvh

k,ij = 0, k = 1, 2, 3, 4,

and the functions Uh
ij , w

h
k,ij , v

h
k,ij are the grid approximations of the functions

U(x, y), wk(x, y), vk(x, y) from representation (2.2). It follows from [2] that

‖Uh
ij − U(xi, yj)‖Lh

∞
(Ω

h
)
:= max

(xi,yj)∈Ω
h
|Uh

ij − U(xi, yj)| = O(N−2 ln2N),

‖wh
k,ij − wk(xi, yj)‖Lh

∞
(Ω

h
)
= O(N−2 ln2N), k = 1, 2, 3, 4. (2.8)

Let Ω
h

1 = Ω
h
∩{(x, y) 0 6 x, y 6 σ} be a subset of the mesh points of Ω

h
,

which forms a square mesh with a small mesh size h in the neighborhood of

the vertex 1 and Ωh
1 be its inner part. Let Ω

h

k denote similar subsets from the
neighborhoods of the vertices k. It follows from [2] that

‖vh
k,ij − vk(xi, yj)‖Lh

∞
(Ω

h
\Ωh

k
)
= O(N−2), k = 1, . . . , 4. (2.9)

3. The Main Theorem

Theorem 3 [main]. If conditions (1.4)–(1.6) are satisfied then the solution

of problem (2.6) on the mesh (2.3)-(2.5) converges uniformly with respect to

ε to the solution of problem (1.1)-(1.3) at the rate of O(N−2+δ) in sense of

the Lh
∞-norm, where δ > 0 is an arbitrary number, that is

‖uh
ij − u(xi, yj)‖Lh

∞
(Ω

h
)
= O(N−2+δ). (3.1)
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By virtue of representations (2.2),(2.7) and estimates (2.8),(2.9), for va-
lidity of (3.1) it is sufficient to prove that

‖vh
k,ij − vk(xi, yj)‖Lh

∞
(Ωh

k
) = O(N−2+δ), k = 1, . . . , 4.

Actually it is sufficient to carry out this estimate only for k = 1, because for
the other k this is made similarly. The function zh

ij := vh
1,ij − v1(xi, yj) is the

solution of the following problem

Lhzh
ij = ψij := −Lhv1(xi, yj), (xi, yj) ∈ Ωh

1 , zh
ij

∣

∣

∂Ωh
1

is defined. (3.2)

Theorem 4. For the solution of problem (3.2) the following a priori estimate

is valid

‖zh‖Lh
∞

(Ωh
1
) 6 c ε−2 lnN‖ψ‖Lh

1
(Ωh

1
) + ‖zh‖Lh

∞
(∂Ωh

1
), (3.3)

where

‖v‖Lh
1
(Ωh

1
) := (|v|, 1)Ωh

1

:=
∑

(xi,yj)∈Ωh
1

|vij |h
2.

Since by virtue of (2.1) |ψij | 6 c h2/(x2
i + y2

i ), and from (2.9) it follows
that ‖zh‖Lh

∞
(∂Ωh

1
) = O(N−2), then from (3.3) we obtain desired estimate

‖zh‖Lh
∞

(Ωh
1
) 6 c ε−2h2 ln2N = O(N−2 ln4N) = O(N−2+δ).

In order to prove theorem 4 we represent the solution of problem (3.2)
using the Green function, which is defined, for every Q = (ξ′i, η

′
j) by the

relations

LhG(P ;Q) =

{

0, P 6= Q,

h−2, P = Q,
P = (xi, yj) ∈ Ωh

1 ,

G(P ;Q) = 0, P ∈ ∂Ωh
1 .

For the Green function the following relations, easily verified, hold

ε2‖∇hG‖2

Lh
2
(Ω

h

1
)
+ (q,G2)Ωh

1

= G(P, P ), (3.4)

ε2/Gn, 1/+ (q,G)Ωh
1

= 1, (3.5)

where ∇hG is a grid analogue of the gradient and /Gn, 1/ is a discrete analogue
of the integral along the boundary from the derivative with respect to the inner
normal.

By virtue of (1.3) and positiveness of the Green function, it follows from
(3.5) that Gn > 0 and

ε2/Gn, 1/ 6 1, (3.6)

and also, from (3.4), we get the following estimate

ε2‖∇hG‖2

Lh
2
(Ω

h

1
)
6 G(P ;P ). (3.7)



212 V.B. Andreev

Using (3.4), it is easy to verify that ‖∇hG‖2
Lh

2
(Ωh

1
)

does not depend on

the value of the mesh size h of Ω
h

1 . Therefore so called ”weak embedding
theorem” [4] takes place, in virtue of which, for any function vij defined on

Ω
h

1 and vanishing on ∂Ωh
1 , it follows that

‖vij‖Lh
∞

(Ωh
1
) 6 c (lnN)1/2‖∇hv‖

Lh
2
(Ω

h

1
)
, (3.8)

where constant c is independent of N . Therefore it follows from (3.7) that

ε2‖∇hG‖
Lh

2
(Ω

h

1
)
6 c (lnN)1/2,

and from this and (3.8) we get

‖G‖Lh
∞

(Ωh
1
×Ωh

1
) 6 c ε−2 lnN. (3.9)

Using grid Green’s formulas, we obtain

zh(P ) =
∑

Q∈Ωh
1

G(P ;Q)ψ(Q)h2 + ε2/Gn, z
h/

and therefore the following estimate is valid

‖zh‖Lh
∞

(Ωh
1
) 6 ‖G‖Lh

∞
(Ωh

1
×Ωh

1
)‖ψ‖Lh

1
(Ωh

1
) + ε2/Gn, 1/ ‖zh‖Lh

∞
(∂Ωh

1
).

Combining this estimate with (3.6) and (3.9), we obtain a priori estimate
(3.3).
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