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Motivation

A schematic view of a MOPA device:
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PROBLEM FORMULATION

Consider the pure initial value problem for the 1D Schrö-

dinger equation (i =
√
−1):

∂ũ

∂t
+ iDf

∂2ũ

∂x2
− iV (x)ũ = 0, x ∈ R, t > 0, (1)

ũ(x,0) = u0(x), x ∈ R,

· Initial data u0(x) is supported only on some finite do-

main;

· V (x) = 0 for |x| ≤ Xδ.
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The domain of interest is restricted to a bounded interval

Ωx = [−X̃, X̃].

Our goal is to formulate artificial BCs on an extended in-

terval (−X, X) with X > X̃ as close to X̃ as possible,

such that the solution u(x, t) of problem

∂u

∂t
+ iDf

∂2u

∂x2
+
(

α(x) − iV (x)
)

u = 0, (2)

u(x,0) = u0(x), x ∈ [−X, X],

FLu(−X, t) = 0, FRu(X, t) = 0, t > 0

is close to the exact solution of (1), e.g. it satisfies the

estimate
∫ T

0

∫ X̃

−X̃
|ũ(x, t) − u(x, t)|2 dxdt ≤ ε2.
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BC ?

u(x, t) =
1

√

1 − i t
α

e

[

−ik(x−kt)−(x−2kt)2

4(α−it)

]

In the case of a parabolic problem the following BCs are

used:

1. u(−X, t) = 0, u(X, t) = 0.

2. u′
x(−X, t) = 0, u′

x(X, t) = 0.

3. −du′
x(−X, t) + βu(−X, t) = g0.
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Reflective boundary conditions

Let us solve problem (2) in a sufficiently large domain with

the reflective BCs:

u(−X, t) = 0, u(X, t) = 0, t > 0. (3)

For functions u, v ∈ L2(Ωx) we define the inner product

(u, v) and the L2 norm ‖u‖ by

(u, v) =
∫ X

−X
u(x)v∗(x) dx, ‖u‖ =

√

(u, u).

Let us define mass M and energy E of the solution as

M(t) =
∫ X

−X
|u(x, t)|2 dx,

E(t) =
∫ X

−X

(

Df

∣

∣

∣

∣

∂u

∂x
(x, t)

∣

∣

∣

∣

2

+ V (x) |u(x, t)|2
)

dx.
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Lemma 1. If α(x) ≥ 0 (or α(x) ≡ 0) and u(x, t) is

the solution of problem (2) – (3), then the total mass of the

solution is not increased (conserved) in time:

M(t) ≡‖u(·, t)‖2 ≤ ‖u0‖2 ≡ M(0) (4)

( ‖u(·, t)‖2 = ‖u0‖2 )

If α(x) ≡ 0 (i.e. the potential function is real valued),

then energy E(t) of problem (2) – (3) is conserved:

E(t) = E(0). (5)

Proof. Computing the inner product of equation (2) with u(x, t),
integrating by parts the diffraction operator and taking the real part of
the obtained equality we get the equation

d

dt
‖u(·, t)‖2 + 2

∫ X

−X

α(x) |u(x, t)|2 dx = 0.
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In order to prove (5) we compute the inner product of equation (2)

with
∂

∂t
u(x, t), integrate by parts the diffraction operator and take

the imaginary part of the the obtained equality

∂

∂t

(

Df

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

+

∫ X

−X

V (x) |u(x, t)|2 dx

)

= 2

∫ X

−X

α(x) Im

(

u
∂u∗

∂t

)

dx.

Thus the absorbtion disturbes the conservativity of the energy E(t).

If α ≡ 0, then we get the energy conservation law d
dt

E(t) = 0.
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It is easy to get estimates of the solution in the maximum

norm:

‖u(·, t)‖∞ = max
−X≤x≤X

|u(x, t)|.

Lemma 2. Let u(x, t) be the solution of problem (2) – (3).

If α(x) = 0 and V (x) ≥ 0 then u(x, t) is bounded

unconditionally in the maximum norm

‖u(·, t)‖∞ ≤
√

√

√

√

XE(0)

2Df
.

If −VM ≤ V (x) ≤ 0, then a similar estimate is valid for

sufficiantly small VM , i.e. when

4VMX2

π2
≤ qDf for q < 1.
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Proof. If V (x) ≥ 0, then we have the estimate
∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

≤ 1

Df

E(0).

It is sufficient to apply the Sobolev imbedding inequality:

‖u(·, t)‖∞ ≤
√

2X

2

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

.

If −VM ≤ V (x) ≤ 0, then we use the Sobolev imbedding inequality

‖u(·, t)‖2 ≤ 4X2

π2

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

and obtain the inequality

Df

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

+

∫ X

−X

V (x) |u(x, t)|2 dx

≥
(

Df − VM
4X2

π2

)∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

.
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Absorbing boundary conditions

Let us consider right/left moving single waves

u(x, t) = e∓ikxeiωt,

where ω(k) denotes the wave frequency and k is the wave

number.

Next we use the relation

∂u

∂x
= ∓iku

and get the following absorbing boundary conditions

−iDf
∂u

∂x

(

− X, t) = γu(−X, t), (6)

iDf
∂u

∂x

(

X, t) = γu(X, t),

If γ = 1
2|v|, where v is the group velocity of the wave:

v :=
∂ω

∂k
= 2Dfk,

then the absorbing BCs are exact.
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Lemma 3. Let α(x) ≡ 0 and u(x, t) is the solution of

problem (2), (6), then the total mass of the solution is not

increased in time:

M(t) ≡ ‖u(·, t)‖2 ≤ ‖u0‖2 ≡ M(0). (7)

The energy E(t) of the solution satisfies the following con-
servation equation

∂

∂t

(

Df

∥

∥

∥

∥

∂u

∂x
(·, t)

∥

∥

∥

∥

2

+

∫ X

−X

V (x) |u(x, t)|2 dx

)

(8)

= 2γ

(

Im

(

u
∂u∗

∂t

(

− X, t
)

)

+ Im

(

u
∂u∗

∂t

(

X, t
)

))

.

Proof. Computing the inner product of equation (2) with u(x, t),
integrating by parts the diffraction operator, using boundary conditions
(6) and taking the real part of the obtained equality we get the equation

d

dt
‖u(·, t)‖2 + 2γ

(

|u(−X, t)|2 + |u(X, t)|2
)

= 0.
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In general, waves are composed of more than one component

with different group velocities.

p
∏

j=1

(

iDf
∂

∂x
− γj

)

u

∣

∣

∣

∣

x=X
= 0.

How to select optimal values of γj ?
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Transparent boundary conditions

The original domain is divided into three subproblems Transparent
boundary conditions are obtained by using the assumption that at the
exterior domains the solution decreases to zero as |x| → ∞ and the
potentials are equal to zero.

Exterior problems can be solved explicitly by the Laplace method. We

get the following boundary conditions:

iDf
∂u

∂x

(

− X,t
)

= i

√

Df

π
eiπ

4
d

dt

∫ t

0

u(−X, s)√
t − s

ds, (9)

− iDf
∂u

∂x

(

X, t
)

= i

√

Df

π
eiπ

4
d

dt

∫ t

0

u(X, s)√
t − s

ds.
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We note that the nonlocal operator on the right hand side

defines a fractional time derivative

√

d

dt
v(t) :=

1√
π

d

dt

∫ t

0

v(s)√
t − s

ds.

These derivatives arise in a formal factorization of the Schrö-

dinger equation into left and right travelling waves:







∂

∂x
− eiπ/4
√

Df

√

∂

∂t













∂

∂x
+

eiπ/4
√

Df

√

∂

∂t






u(x, t) = 0.
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Approximation of nonlocal exact BCs with a
sequence of local operators by using rational

functions

iDf
∂u

∂x

(

X, t) = βmu(X, t)

+
m
∑

k=1

akm

(

u(X, t) − dkmϕkm(t)
)

, m ≥ 1,

where ϕkm is defined by














dϕkm

dt
+ i

(

dkmϕkm(t) − Dfu(t)
)

= 0, t > 0,

ϕkm(0) = 0.

The reflection coefficient is optimized in the L2 norm with the weight
1/
(

1 + (Dfr)2
)

T/2π
∫

0

∣

∣

∣

∣

∣

√

Dfr − βmr −
∑m

k=1

(

akmr/(1 + dkmr)
)

√

Dfr + βmr +
∑m

k=1

(

akmr/(1 + dkmr)
)

∣

∣

∣

∣

∣

2
dr

1+(Dfr)2
.
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Finite-Difference Schemes

We introduce a uniform mesh in x on the interval [−X, X]:

ω̄h = {xj : xj = −X+jh, j = 0, . . . , J, xJ = X}

and a uniform mesh in t on the interval [0, T ]:

ω̄τ = {tn : tn = nτ, n = 0, . . . , N, tN = T}.

Let us define discrete functions:

Un
j = U(xj, t

n), (xj, t
n) ∈ ω̄h × ω̄τ .

We define the forward and backward difference quotents
with respect to x and the backward difference quotent, the
symmetric averaging operator in time

∂xUj :=
Uj+1 − Uj

h
, ∂̄xUj :=

Uj − Uj−1

h
,

∂̄tU
n :=

Un+1 − Un

τ
, Un−1/2 :=

Un + Un−1

2
.
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We investigate the standard Crank-Nicolson approximation

of the Schrōdinger equation (2). Let us consider the reflec-

tive BCs:







































∂̄tU
n
j +iDf∂x∂̄xU

n−1
2

j + (αj−iVj)U
n−1

2
j = 0,

(xj, t
n) ∈ ωh × ωτ ,

Un
0 = 0, Un

J = 0, tn ∈ ωτ ,

U0
j = u0(xj), xj ∈ ω̄h.

(10)
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Let us introduce some mesh counterparts of the inner prod-
ucts and the norms in the discrete L2(ωh) and L2(ω̄h)
spaces:

(U, W )ωh
=

J−1
∑

j=1

UjV
∗
j h,

(U, W )ω̄h
=

J−1
∑

j=1

UjV
∗
j h +

h

2

(

U0W
∗
0 + UJW ∗

J

)

,

‖U‖2
D = (U, U)D.

We also define the discrete analogs of mass and energy of

discrete problem (10) as

Mn
h = ‖Un‖2

ωh
, En

h =

J
∑

j=1

Df

∣

∣∂̄xU
n
j

∣

∣

2
h + (V Un, Un)ωh

.
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Theorem 1 If α(x) ≥ 0 (or α(x) ≡ 0) and Un is the

solution of finite-difference scheme (10), then the discrete

total mass of the solution is not increased (conserved) in

time:

Mn
h ≤ Mn−1

h ≤ . . . ≤ M0
h , (11)

(Mn
h = Mn−1

h = . . . = M0
h).

If α(x) ≡ 0 (i.e. the potential function is real valued),

then the discrete energy En
h of (10) is conserved:

En
h = En−1

h = . . . = E0
h . (12)

Proof.

‖Un‖2ωh
+ 2(α Un−1/2, Un−1/2)ωh = ‖Un−1‖2ωh

.
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We solve the initial-boundary value problem (2) – (3) in

the simple case V (x) ≡ 0, Df = 1. First, let us set

α(x) ≡ 0.

We use the standard example of the Gaussian solution

u(x, t) =
1

√

1 − it/w0

exp

[

−ik(x − kt) − (x − 2kt)2

4(w0 − it)

]

.

We take the following values of parameters: w0 = 0.15, k = 2, the

domain of interest is defined as [−2,2], i.e. X0 = 2. Both effects, the

diffraction and linear transport with the wave number k, are important

in this example.

The reflection ratio at time tn is calculated as

rn =

∑f
j=s |Un

j |2
∑f

j=s |U0
j |2

, xs = −X0, xf = X0.
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Results of Numerical Experiments

The solution of the finite-difference scheme (10) is computed for 0 ≤
t ≤ 1 with different lengths of the extended domain X = 4,5,6.

The reflection coefficient.
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A plot of function |U(xj,1)|2.
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In order to damp a parasitic wave reflected from the bound-

ary we formulate near the boundary an absorbing layer with

the absorbing coefficient α. Let us consider the extended

domain with X = 3 and take the following absorbing layer

α(x) =







0 if |x| ≤ 2.5,

α0 otherwise.
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A plot of function |U(xj,0.5)|2.
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Plots of functions |U(xj, t
n)|2, V = 50.
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Plots of functions |U(xj, t
n)|2, V = −50.
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